{"title":"一个低温cmos低噪声放大器2.3至8.5 K噪声温度在20 K高集成射电天文接收机","authors":"A. Sheldon, L. Belostotski","doi":"10.1109/LMWC.2022.3178579","DOIUrl":null,"url":null,"abstract":"This letter presents a 0.9–1.8-GHz cryo-CMOS low-noise amplifier (LNA) built-in standard 65-nm CMOS for highly integrated radio astronomy receivers. The measured cryogenic noise parameters confirm noise matching in the band and demonstrate that the LNA nears its minimum noise temperature at the desired frequency range. The proposed LNA operates at 20 K, consumes 115 mW of power, and provides a 37.2 ± 2.4 dB gain (<inline-formula> <tex-math notation=\"LaTeX\">$S_{21}$ </tex-math></inline-formula>) with a noise temperature (figure) of 2.3 to 8.5 K (0.03 to 0.13 dB) and <inline-formula> <tex-math notation=\"LaTeX\">$| S_{11}| < -10$ </tex-math></inline-formula> dB.","PeriodicalId":13130,"journal":{"name":"IEEE Microwave and Wireless Components Letters","volume":"32 1","pages":"1319-1322"},"PeriodicalIF":2.9000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Cryo-CMOS Low-Noise Amplifier With 2.3-to-8.5-K Noise Temperature at 20 K for Highly Integrated Radio-Astronomy Receivers\",\"authors\":\"A. Sheldon, L. Belostotski\",\"doi\":\"10.1109/LMWC.2022.3178579\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This letter presents a 0.9–1.8-GHz cryo-CMOS low-noise amplifier (LNA) built-in standard 65-nm CMOS for highly integrated radio astronomy receivers. The measured cryogenic noise parameters confirm noise matching in the band and demonstrate that the LNA nears its minimum noise temperature at the desired frequency range. The proposed LNA operates at 20 K, consumes 115 mW of power, and provides a 37.2 ± 2.4 dB gain (<inline-formula> <tex-math notation=\\\"LaTeX\\\">$S_{21}$ </tex-math></inline-formula>) with a noise temperature (figure) of 2.3 to 8.5 K (0.03 to 0.13 dB) and <inline-formula> <tex-math notation=\\\"LaTeX\\\">$| S_{11}| < -10$ </tex-math></inline-formula> dB.\",\"PeriodicalId\":13130,\"journal\":{\"name\":\"IEEE Microwave and Wireless Components Letters\",\"volume\":\"32 1\",\"pages\":\"1319-1322\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Microwave and Wireless Components Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/LMWC.2022.3178579\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Microwave and Wireless Components Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/LMWC.2022.3178579","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A Cryo-CMOS Low-Noise Amplifier With 2.3-to-8.5-K Noise Temperature at 20 K for Highly Integrated Radio-Astronomy Receivers
This letter presents a 0.9–1.8-GHz cryo-CMOS low-noise amplifier (LNA) built-in standard 65-nm CMOS for highly integrated radio astronomy receivers. The measured cryogenic noise parameters confirm noise matching in the band and demonstrate that the LNA nears its minimum noise temperature at the desired frequency range. The proposed LNA operates at 20 K, consumes 115 mW of power, and provides a 37.2 ± 2.4 dB gain ($S_{21}$ ) with a noise temperature (figure) of 2.3 to 8.5 K (0.03 to 0.13 dB) and $| S_{11}| < -10$ dB.
期刊介绍:
The IEEE Microwave and Wireless Components Letters (MWCL) publishes four-page papers (3 pages of text + up to 1 page of references) that focus on microwave theory, techniques and applications as they relate to components, devices, circuits, biological effects, and systems involving the generation, modulation, demodulation, control, transmission, and detection of microwave signals. This includes scientific, technical, medical and industrial activities. Microwave theory and techniques relates to electromagnetic waves in the frequency range of a few MHz and a THz; other spectral regions and wave types are included within the scope of the MWCL whenever basic microwave theory and techniques can yield useful results. Generally, this occurs in the theory of wave propagation in structures with dimensions comparable to a wavelength, and in the related techniques for analysis and design.