质子交换膜用4-吡啶桥聚苯并咪唑的合成与表征

IF 1.8 4区 化学 Q3 POLYMER SCIENCE High Performance Polymers Pub Date : 2023-06-07 DOI:10.1177/09540083231181926
Yashesh J Rathwa, Navin P. Chikhaliya
{"title":"质子交换膜用4-吡啶桥聚苯并咪唑的合成与表征","authors":"Yashesh J Rathwa, Navin P. Chikhaliya","doi":"10.1177/09540083231181926","DOIUrl":null,"url":null,"abstract":"A series of polybenzimidazoles (PBIs) incorporated main chain 4-pyridine bridge groups were synthesized from 4,4′-([4,4′-bipyridine]-2,6,-diyl)bis (benzene-1,2-diamine) which reacted with four different diacids like isophthalic acid,4,4′-Oxibis benzoic acid, 5-amino isophthalic acid and 2,5-pyridine dicarboxylic acid using polyphosphoric acid as solvent. A process termed dispersion polymerizationhas been developed to prepare PBIs.For the membranepreparation, 4-pyridine-bridge polybenzimidazole (Py-PBI) productswere re-dissolved in dimethyl sulfoxide and cast. The polymer structure characterization included FT-IR, UV, Powder XRD, Water Uptake, Swelling Ratio, Ion exchange capacity, Acid doping, Acid leaching, Oxidative stability, and Polymer inherent viscosity find out by using Ubbelohde viscometer whilethermal stability assessments via thermogravimetric analysis. The Py-PBI-based polymer electrolyte membranes’ mechanical properties measurement showed that the 4-pyridine-bridge PBIs membranes were flexible, thermally stable, and mechanically strong when compared with conventional PBI. The current-voltage (I-V) characteristics of the 4-Py-PBI membrane show that the conductivity of the 4441P membrane is 0.546 S cm−1. Graphical Abstract","PeriodicalId":12932,"journal":{"name":"High Performance Polymers","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis and characterization of 4-pyridine-bridge polybenzimidazolefor proton exchange membranes\",\"authors\":\"Yashesh J Rathwa, Navin P. Chikhaliya\",\"doi\":\"10.1177/09540083231181926\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A series of polybenzimidazoles (PBIs) incorporated main chain 4-pyridine bridge groups were synthesized from 4,4′-([4,4′-bipyridine]-2,6,-diyl)bis (benzene-1,2-diamine) which reacted with four different diacids like isophthalic acid,4,4′-Oxibis benzoic acid, 5-amino isophthalic acid and 2,5-pyridine dicarboxylic acid using polyphosphoric acid as solvent. A process termed dispersion polymerizationhas been developed to prepare PBIs.For the membranepreparation, 4-pyridine-bridge polybenzimidazole (Py-PBI) productswere re-dissolved in dimethyl sulfoxide and cast. The polymer structure characterization included FT-IR, UV, Powder XRD, Water Uptake, Swelling Ratio, Ion exchange capacity, Acid doping, Acid leaching, Oxidative stability, and Polymer inherent viscosity find out by using Ubbelohde viscometer whilethermal stability assessments via thermogravimetric analysis. The Py-PBI-based polymer electrolyte membranes’ mechanical properties measurement showed that the 4-pyridine-bridge PBIs membranes were flexible, thermally stable, and mechanically strong when compared with conventional PBI. The current-voltage (I-V) characteristics of the 4-Py-PBI membrane show that the conductivity of the 4441P membrane is 0.546 S cm−1. Graphical Abstract\",\"PeriodicalId\":12932,\"journal\":{\"name\":\"High Performance Polymers\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High Performance Polymers\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1177/09540083231181926\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Performance Polymers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1177/09540083231181926","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

以4,4′-([4,4′-联吡啶]-2,6,-二酰基)二(苯-1,2-二胺)为原料,以多磷酸为溶剂,与异苯二甲酸、4,4′-氧化二苯甲酸、5-氨基异苯二甲酸和2,5-吡啶二甲酸等四种不同的二酸反应,合成了一系列含有主链4-吡啶桥基的多苯并咪唑(ppi)。一种称为分散聚合的方法被开发出来制备pbi。4-吡啶桥聚苯并咪唑(Py-PBI)产物在二甲亚砜中再溶解并浇铸。聚合物的结构表征包括FT-IR、UV、粉末XRD、吸水率、溶胀比、离子交换容量、酸掺杂、酸浸、氧化稳定性、聚合物固有粘度等,通过Ubbelohde粘度计进行表征,热稳定性通过热重分析进行评价。对py -PBI基聚合物电解质膜的力学性能测试表明,与传统的PBI相比,4-吡啶桥式PBI膜具有柔韧性、热稳定性和机械强度。4-Py-PBI膜的电流-电压(I-V)特性表明,4441P膜的电导率为0.546 S cm−1。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synthesis and characterization of 4-pyridine-bridge polybenzimidazolefor proton exchange membranes
A series of polybenzimidazoles (PBIs) incorporated main chain 4-pyridine bridge groups were synthesized from 4,4′-([4,4′-bipyridine]-2,6,-diyl)bis (benzene-1,2-diamine) which reacted with four different diacids like isophthalic acid,4,4′-Oxibis benzoic acid, 5-amino isophthalic acid and 2,5-pyridine dicarboxylic acid using polyphosphoric acid as solvent. A process termed dispersion polymerizationhas been developed to prepare PBIs.For the membranepreparation, 4-pyridine-bridge polybenzimidazole (Py-PBI) productswere re-dissolved in dimethyl sulfoxide and cast. The polymer structure characterization included FT-IR, UV, Powder XRD, Water Uptake, Swelling Ratio, Ion exchange capacity, Acid doping, Acid leaching, Oxidative stability, and Polymer inherent viscosity find out by using Ubbelohde viscometer whilethermal stability assessments via thermogravimetric analysis. The Py-PBI-based polymer electrolyte membranes’ mechanical properties measurement showed that the 4-pyridine-bridge PBIs membranes were flexible, thermally stable, and mechanically strong when compared with conventional PBI. The current-voltage (I-V) characteristics of the 4-Py-PBI membrane show that the conductivity of the 4441P membrane is 0.546 S cm−1. Graphical Abstract
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
High Performance Polymers
High Performance Polymers 化学-高分子科学
CiteScore
4.20
自引率
14.30%
发文量
106
审稿时长
1.2 months
期刊介绍: Health Services Management Research (HSMR) is an authoritative international peer-reviewed journal which publishes theoretically and empirically rigorous research on questions of enduring interest to health-care organizations and systems throughout the world. Examining the real issues confronting health services management, it provides an independent view and cutting edge evidence-based research to guide policy-making and management decision-making. HSMR aims to be a forum serving an international community of academics and researchers on the one hand and healthcare managers, executives, policymakers and clinicians and all health professionals on the other. HSMR wants to make a substantial contribution to both research and managerial practice, with particular emphasis placed on publishing studies which offer actionable findings and on promoting knowledge mobilisation toward theoretical advances. All papers are expected to be of interest and relevance to an international audience. HSMR aims at enhance communication between academics and practitioners concerned with developing, implementing, and analysing health management issues, reforms and innovations primarily in European health systems and in all countries with developed health systems. Papers can report research undertaken in a single country, but they need to locate and explain their findings in an international context, and in international literature.
期刊最新文献
The fabrication of polyimide-based tunable ternary memristors doped with Ni-Co coated carbon composite nanofibers Analysis of the impact of exfoliated graphene oxide on the mechanical performance and in-plane fracture resistance of epoxy-based nanocomposite Preparation of halogen-free flame retardant curing agent and its application in epoxy resin Bio-based phthalonitrile resin derived from quercetin as a sustainable molecular scaffold: Synthesis, curing reaction and comparison with petroleum-based counterparts Copolymerization of novel self-promoted curing phthalonitrile with epoxy resin and its thermal property
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1