{"title":"非接触充气式选择性输电线路","authors":"Xiao-he Cheng, Tingting Xie, Yuan Yao, Yaohui Yang, Ting Zhang, Junsheng Yu, Xiao-dong Chen","doi":"10.1109/LMWC.2022.3179872","DOIUrl":null,"url":null,"abstract":"An air-filled mode selective transmission line (AF-MSTL) consisting of an opened groove gap waveguide (GWG) and an inverted coplanar waveguide (CPW) is proposed in this letter. By using the electromagnetic band gap (EBG) structure, the electrical contacts of AF-MSTL are not required during the assembly process. To verify the design, the AF-MSTL prototype, connected to two designed grounded-CPW (GCPW) to AF-MSTL transitions to build a back-to-back structure, has been fabricated and measured. A measured insertion loss of 0.2857 dB/mm at 110 GHz is achieved, which is lower than the dielectric filled (DF) MSTL of 0.5012 dB/mm at 110 GHz.","PeriodicalId":13130,"journal":{"name":"IEEE Microwave and Wireless Components Letters","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Contactless Air-Filled Mode Selective Transmission Line\",\"authors\":\"Xiao-he Cheng, Tingting Xie, Yuan Yao, Yaohui Yang, Ting Zhang, Junsheng Yu, Xiao-dong Chen\",\"doi\":\"10.1109/LMWC.2022.3179872\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An air-filled mode selective transmission line (AF-MSTL) consisting of an opened groove gap waveguide (GWG) and an inverted coplanar waveguide (CPW) is proposed in this letter. By using the electromagnetic band gap (EBG) structure, the electrical contacts of AF-MSTL are not required during the assembly process. To verify the design, the AF-MSTL prototype, connected to two designed grounded-CPW (GCPW) to AF-MSTL transitions to build a back-to-back structure, has been fabricated and measured. A measured insertion loss of 0.2857 dB/mm at 110 GHz is achieved, which is lower than the dielectric filled (DF) MSTL of 0.5012 dB/mm at 110 GHz.\",\"PeriodicalId\":13130,\"journal\":{\"name\":\"IEEE Microwave and Wireless Components Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Microwave and Wireless Components Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/LMWC.2022.3179872\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Microwave and Wireless Components Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/LMWC.2022.3179872","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Contactless Air-Filled Mode Selective Transmission Line
An air-filled mode selective transmission line (AF-MSTL) consisting of an opened groove gap waveguide (GWG) and an inverted coplanar waveguide (CPW) is proposed in this letter. By using the electromagnetic band gap (EBG) structure, the electrical contacts of AF-MSTL are not required during the assembly process. To verify the design, the AF-MSTL prototype, connected to two designed grounded-CPW (GCPW) to AF-MSTL transitions to build a back-to-back structure, has been fabricated and measured. A measured insertion loss of 0.2857 dB/mm at 110 GHz is achieved, which is lower than the dielectric filled (DF) MSTL of 0.5012 dB/mm at 110 GHz.
期刊介绍:
The IEEE Microwave and Wireless Components Letters (MWCL) publishes four-page papers (3 pages of text + up to 1 page of references) that focus on microwave theory, techniques and applications as they relate to components, devices, circuits, biological effects, and systems involving the generation, modulation, demodulation, control, transmission, and detection of microwave signals. This includes scientific, technical, medical and industrial activities. Microwave theory and techniques relates to electromagnetic waves in the frequency range of a few MHz and a THz; other spectral regions and wave types are included within the scope of the MWCL whenever basic microwave theory and techniques can yield useful results. Generally, this occurs in the theory of wave propagation in structures with dimensions comparable to a wavelength, and in the related techniques for analysis and design.