基于深度学习的定量核磁共振图像中脑肿瘤生物标志物的检测和识别

IF 6.3 2区 物理与天体物理 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Machine Learning Science and Technology Pub Date : 2023-08-15 DOI:10.1088/2632-2153/acf095
I. Tampu, N. Haj-Hosseini, I. Blystad, A. Eklund
{"title":"基于深度学习的定量核磁共振图像中脑肿瘤生物标志物的检测和识别","authors":"I. Tampu, N. Haj-Hosseini, I. Blystad, A. Eklund","doi":"10.1088/2632-2153/acf095","DOIUrl":null,"url":null,"abstract":"The infiltrative nature of malignant gliomas results in active tumor spreading into the peritumoral edema, which is not visible in conventional magnetic resonance imaging (cMRI) even after contrast injection. MR relaxometry (qMRI) measures relaxation rates dependent on tissue properties and can offer additional contrast mechanisms to highlight the non-enhancing infiltrative tumor. To investigate if qMRI data provides additional information compared to cMRI sequences when considering deep learning-based brain tumor detection and segmentation, preoperative conventional (T1w per- and post-contrast, T2w and FLAIR) and quantitative (pre- and post-contrast R1, R2 and proton density) MR data was obtained from 23 patients with typical radiological findings suggestive of a high-grade glioma. 2D deep learning models were trained on transversal slices (n = 528) for tumor detection and segmentation using either cMRI or qMRI. Moreover, trends in quantitative R1 and R2 rates of regions identified as relevant for tumor detection by model explainability methods were qualitatively analyzed. Tumor detection and segmentation performance for models trained with a combination of qMRI pre- and post-contrast was the highest (detection Matthews correlation coefficient (MCC) = 0.72, segmentation dice similarity coefficient (DSC) = 0.90), however, the difference compared to cMRI was not statistically significant. Overall analysis of the relevant regions identified using model explainability showed no differences between models trained on cMRI or qMRI. When looking at the individual cases, relaxation rates of brain regions outside the annotation and identified as relevant for tumor detection exhibited changes after contrast injection similar to region inside the annotation in the majority of cases. In conclusion, models trained on qMRI data obtained similar detection and segmentation performance to those trained on cMRI data, with the advantage of quantitatively measuring brain tissue properties within a similar scan time. When considering individual patients, the analysis of relaxation rates of regions identified by model explainability suggests the presence of infiltrative tumor outside the cMRI-based tumor annotation.","PeriodicalId":33757,"journal":{"name":"Machine Learning Science and Technology","volume":" ","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2023-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep learning-based detection and identification of brain tumor biomarkers in quantitative MR-images\",\"authors\":\"I. Tampu, N. Haj-Hosseini, I. Blystad, A. Eklund\",\"doi\":\"10.1088/2632-2153/acf095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The infiltrative nature of malignant gliomas results in active tumor spreading into the peritumoral edema, which is not visible in conventional magnetic resonance imaging (cMRI) even after contrast injection. MR relaxometry (qMRI) measures relaxation rates dependent on tissue properties and can offer additional contrast mechanisms to highlight the non-enhancing infiltrative tumor. To investigate if qMRI data provides additional information compared to cMRI sequences when considering deep learning-based brain tumor detection and segmentation, preoperative conventional (T1w per- and post-contrast, T2w and FLAIR) and quantitative (pre- and post-contrast R1, R2 and proton density) MR data was obtained from 23 patients with typical radiological findings suggestive of a high-grade glioma. 2D deep learning models were trained on transversal slices (n = 528) for tumor detection and segmentation using either cMRI or qMRI. Moreover, trends in quantitative R1 and R2 rates of regions identified as relevant for tumor detection by model explainability methods were qualitatively analyzed. Tumor detection and segmentation performance for models trained with a combination of qMRI pre- and post-contrast was the highest (detection Matthews correlation coefficient (MCC) = 0.72, segmentation dice similarity coefficient (DSC) = 0.90), however, the difference compared to cMRI was not statistically significant. Overall analysis of the relevant regions identified using model explainability showed no differences between models trained on cMRI or qMRI. When looking at the individual cases, relaxation rates of brain regions outside the annotation and identified as relevant for tumor detection exhibited changes after contrast injection similar to region inside the annotation in the majority of cases. In conclusion, models trained on qMRI data obtained similar detection and segmentation performance to those trained on cMRI data, with the advantage of quantitatively measuring brain tissue properties within a similar scan time. When considering individual patients, the analysis of relaxation rates of regions identified by model explainability suggests the presence of infiltrative tumor outside the cMRI-based tumor annotation.\",\"PeriodicalId\":33757,\"journal\":{\"name\":\"Machine Learning Science and Technology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2023-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine Learning Science and Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/2632-2153/acf095\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2632-2153/acf095","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

恶性胶质瘤的浸润性导致活动性肿瘤扩散到瘤周水肿,即使在注射造影剂后,在常规磁共振成像(cMRI)中也看不到这种水肿。MR弛豫术(qMRI)测量依赖于组织特性的弛豫率,并可以提供额外的对比机制来突出非增强浸润性肿瘤。为了研究在考虑基于深度学习的脑肿瘤检测和分割时,与cMRI序列相比,qMRI数据是否提供了额外的信息,术前常规(T1w对比和对比后,T2w和FLAIR)和定量(对比前和对比后R1、R2和质子密度)MR数据来自23名具有典型放射学表现的患者,这些表现提示高级别神经胶质瘤。在横向切片(n=528)上训练2D深度学习模型,用于使用cMRI或qMRI进行肿瘤检测和分割。此外,定性分析了通过模型可解释性方法确定的与肿瘤检测相关的区域的定量R1和R2比率的趋势。使用qMRI对比前后组合训练的模型的肿瘤检测和分割性能最高(检测-马修斯相关系数(MCC)=0.72,分割骰子相似系数(DSC)=0.90),然而,与cMRI相比,差异在统计学上并不显著。使用模型可解释性确定的相关区域的总体分析显示,在cMRI或qMRI上训练的模型之间没有差异。当观察单个病例时,注释外和被确定为与肿瘤检测相关的大脑区域的弛豫率在造影剂注射后表现出与大多数病例中注释内区域相似的变化。总之,在qMRI数据上训练的模型获得了与在cMRI数据上培训的模型相似的检测和分割性能,其优点是在相似的扫描时间内定量测量脑组织特性。当考虑个别患者时,通过模型可解释性确定的区域的弛豫率分析表明,在基于cMRI的肿瘤注释之外存在浸润性肿瘤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep learning-based detection and identification of brain tumor biomarkers in quantitative MR-images
The infiltrative nature of malignant gliomas results in active tumor spreading into the peritumoral edema, which is not visible in conventional magnetic resonance imaging (cMRI) even after contrast injection. MR relaxometry (qMRI) measures relaxation rates dependent on tissue properties and can offer additional contrast mechanisms to highlight the non-enhancing infiltrative tumor. To investigate if qMRI data provides additional information compared to cMRI sequences when considering deep learning-based brain tumor detection and segmentation, preoperative conventional (T1w per- and post-contrast, T2w and FLAIR) and quantitative (pre- and post-contrast R1, R2 and proton density) MR data was obtained from 23 patients with typical radiological findings suggestive of a high-grade glioma. 2D deep learning models were trained on transversal slices (n = 528) for tumor detection and segmentation using either cMRI or qMRI. Moreover, trends in quantitative R1 and R2 rates of regions identified as relevant for tumor detection by model explainability methods were qualitatively analyzed. Tumor detection and segmentation performance for models trained with a combination of qMRI pre- and post-contrast was the highest (detection Matthews correlation coefficient (MCC) = 0.72, segmentation dice similarity coefficient (DSC) = 0.90), however, the difference compared to cMRI was not statistically significant. Overall analysis of the relevant regions identified using model explainability showed no differences between models trained on cMRI or qMRI. When looking at the individual cases, relaxation rates of brain regions outside the annotation and identified as relevant for tumor detection exhibited changes after contrast injection similar to region inside the annotation in the majority of cases. In conclusion, models trained on qMRI data obtained similar detection and segmentation performance to those trained on cMRI data, with the advantage of quantitatively measuring brain tissue properties within a similar scan time. When considering individual patients, the analysis of relaxation rates of regions identified by model explainability suggests the presence of infiltrative tumor outside the cMRI-based tumor annotation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Machine Learning Science and Technology
Machine Learning Science and Technology Computer Science-Artificial Intelligence
CiteScore
9.10
自引率
4.40%
发文量
86
审稿时长
5 weeks
期刊介绍: Machine Learning Science and Technology is a multidisciplinary open access journal that bridges the application of machine learning across the sciences with advances in machine learning methods and theory as motivated by physical insights. Specifically, articles must fall into one of the following categories: advance the state of machine learning-driven applications in the sciences or make conceptual, methodological or theoretical advances in machine learning with applications to, inspiration from, or motivated by scientific problems.
期刊最新文献
Quality assurance for online adaptive radiotherapy: a secondary dose verification model with geometry-encoded U-Net. Optimizing ZX-diagrams with deep reinforcement learning DiffLense: a conditional diffusion model for super-resolution of gravitational lensing data Equivariant tensor network potentials Masked particle modeling on sets: towards self-supervised high energy physics foundation models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1