{"title":"额外制造的皮肤传感器,用于机械和热生物信号监测","authors":"Mika-Matti Laurila","doi":"10.1088/2058-8585/acdca1","DOIUrl":null,"url":null,"abstract":"Continuous biosignal monitoring with on-skin worn sensor devices enables out-of-hospital patient monitoring (i.e. ubiquitous healthcare), which has high potential to reduce various disease-related societal costs through large-scale screening of disease risk groups. However, novel fabrication methods need to be adopted to enable the required large-scale deployment of such devices. Additive fabrication technologies have emerged as potential candidates to meet this challenge due to their low material consumption, scalability, and compatibility with skin-conformable low Tg polymeric substrates. This review article discusses recent advances in additively fabricated on-skin biosignal sensors and focuses on the following topics: (1) available additive fabrication technologies; (2) on-skin measurable mechanical and thermal biosignals and related additively fabricated biosignal sensors; and (3) the emerging field of printed electronic tattoo (e-tattoo)-type mechanical and thermal biosignal sensors.","PeriodicalId":51335,"journal":{"name":"Flexible and Printed Electronics","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Additively fabricated on-skin sensors for mechanical and thermal biosignal monitoring\",\"authors\":\"Mika-Matti Laurila\",\"doi\":\"10.1088/2058-8585/acdca1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Continuous biosignal monitoring with on-skin worn sensor devices enables out-of-hospital patient monitoring (i.e. ubiquitous healthcare), which has high potential to reduce various disease-related societal costs through large-scale screening of disease risk groups. However, novel fabrication methods need to be adopted to enable the required large-scale deployment of such devices. Additive fabrication technologies have emerged as potential candidates to meet this challenge due to their low material consumption, scalability, and compatibility with skin-conformable low Tg polymeric substrates. This review article discusses recent advances in additively fabricated on-skin biosignal sensors and focuses on the following topics: (1) available additive fabrication technologies; (2) on-skin measurable mechanical and thermal biosignals and related additively fabricated biosignal sensors; and (3) the emerging field of printed electronic tattoo (e-tattoo)-type mechanical and thermal biosignal sensors.\",\"PeriodicalId\":51335,\"journal\":{\"name\":\"Flexible and Printed Electronics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Flexible and Printed Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/2058-8585/acdca1\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flexible and Printed Electronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/2058-8585/acdca1","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Additively fabricated on-skin sensors for mechanical and thermal biosignal monitoring
Continuous biosignal monitoring with on-skin worn sensor devices enables out-of-hospital patient monitoring (i.e. ubiquitous healthcare), which has high potential to reduce various disease-related societal costs through large-scale screening of disease risk groups. However, novel fabrication methods need to be adopted to enable the required large-scale deployment of such devices. Additive fabrication technologies have emerged as potential candidates to meet this challenge due to their low material consumption, scalability, and compatibility with skin-conformable low Tg polymeric substrates. This review article discusses recent advances in additively fabricated on-skin biosignal sensors and focuses on the following topics: (1) available additive fabrication technologies; (2) on-skin measurable mechanical and thermal biosignals and related additively fabricated biosignal sensors; and (3) the emerging field of printed electronic tattoo (e-tattoo)-type mechanical and thermal biosignal sensors.
期刊介绍:
Flexible and Printed Electronics is a multidisciplinary journal publishing cutting edge research articles on electronics that can be either flexible, plastic, stretchable, conformable or printed. Research related to electronic materials, manufacturing techniques, components or systems which meets any one (or more) of the above criteria is suitable for publication in the journal. Subjects included in the journal range from flexible materials and printing techniques, design or modelling of electrical systems and components, advanced fabrication methods and bioelectronics, to the properties of devices and end user applications.