改进工业规模线性规划的数学表述

Q3 Social Sciences INFORMS Transactions on Education Pub Date : 2023-04-28 DOI:10.1287/ited.2023.0283
Gus Greivel, A. Newman, Maxwell Brown, K. Eurek
{"title":"改进工业规模线性规划的数学表述","authors":"Gus Greivel, A. Newman, Maxwell Brown, K. Eurek","doi":"10.1287/ited.2023.0283","DOIUrl":null,"url":null,"abstract":"Industrial-scale models require considerable setup time; hence, once built, they are used in myriad ways to consider closely related cases. In practice, the code for these models frequently evolves without appropriate notational choices, largely as a result of the lengthy development time of, and the number of individuals contributing to, their formulation. This leads to inefficiencies and obfuscates model structures that might be leveraged to expedite solutions. In this paper, we advocate for an emerging literature on model formulation “best practices” and present the reformulation of a widely used industrial-scale linear program. The efficient mathematical expression of this linear program, used to plan capacity expansion in the energy sector, allows for greater transparency of model structures and enhanced ability to identify computational performance improvements, as well as a lucid interpretation of its solutions. This type of formulation is employed in several mathematical programming courses at our university as an example of the advantages of best practices; the model more broadly is used widely to inform policy in the U.S. energy sector. Funding: This work was supported by the National Renewable Energy Laboratory (Laboratory Directed Research and Development program).","PeriodicalId":37137,"journal":{"name":"INFORMS Transactions on Education","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving Mathematical Exposition of an Industrial-Scale Linear Program\",\"authors\":\"Gus Greivel, A. Newman, Maxwell Brown, K. Eurek\",\"doi\":\"10.1287/ited.2023.0283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Industrial-scale models require considerable setup time; hence, once built, they are used in myriad ways to consider closely related cases. In practice, the code for these models frequently evolves without appropriate notational choices, largely as a result of the lengthy development time of, and the number of individuals contributing to, their formulation. This leads to inefficiencies and obfuscates model structures that might be leveraged to expedite solutions. In this paper, we advocate for an emerging literature on model formulation “best practices” and present the reformulation of a widely used industrial-scale linear program. The efficient mathematical expression of this linear program, used to plan capacity expansion in the energy sector, allows for greater transparency of model structures and enhanced ability to identify computational performance improvements, as well as a lucid interpretation of its solutions. This type of formulation is employed in several mathematical programming courses at our university as an example of the advantages of best practices; the model more broadly is used widely to inform policy in the U.S. energy sector. Funding: This work was supported by the National Renewable Energy Laboratory (Laboratory Directed Research and Development program).\",\"PeriodicalId\":37137,\"journal\":{\"name\":\"INFORMS Transactions on Education\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"INFORMS Transactions on Education\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1287/ited.2023.0283\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"INFORMS Transactions on Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1287/ited.2023.0283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

摘要

工业规模的模型需要相当长的设置时间;因此,一旦建立起来,它们就以各种方式被用来考虑密切相关的案例。在实践中,这些模型的代码经常在没有适当的符号选择的情况下演变,这主要是由于其公式的开发时间长以及参与其公式的个人数量多。这会导致效率低下,并混淆可能用于加快解决方案的模型结构。在本文中,我们提倡一种关于模型制定的新兴文献“最佳实践”,并提出了一种广泛使用的工业规模线性规划的重新制定。该线性程序用于规划能源部门的产能扩张,其高效的数学表达式可以提高模型结构的透明度,增强识别计算性能改进的能力,并对其解决方案进行清晰的解释。这种类型的公式被用于我们大学的几个数学编程课程,作为最佳实践优势的一个例子;该模型被更广泛地用于为美国能源部门的政策提供信息。资助:这项工作得到了国家可再生能源实验室(实验室指导的研究和开发计划)的支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improving Mathematical Exposition of an Industrial-Scale Linear Program
Industrial-scale models require considerable setup time; hence, once built, they are used in myriad ways to consider closely related cases. In practice, the code for these models frequently evolves without appropriate notational choices, largely as a result of the lengthy development time of, and the number of individuals contributing to, their formulation. This leads to inefficiencies and obfuscates model structures that might be leveraged to expedite solutions. In this paper, we advocate for an emerging literature on model formulation “best practices” and present the reformulation of a widely used industrial-scale linear program. The efficient mathematical expression of this linear program, used to plan capacity expansion in the energy sector, allows for greater transparency of model structures and enhanced ability to identify computational performance improvements, as well as a lucid interpretation of its solutions. This type of formulation is employed in several mathematical programming courses at our university as an example of the advantages of best practices; the model more broadly is used widely to inform policy in the U.S. energy sector. Funding: This work was supported by the National Renewable Energy Laboratory (Laboratory Directed Research and Development program).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
相关文献
二甲双胍通过HDAC6和FoxO3a转录调控肌肉生长抑制素诱导肌肉萎缩
IF 8.9 1区 医学Journal of Cachexia, Sarcopenia and MusclePub Date : 2021-11-02 DOI: 10.1002/jcsm.12833
Min Ju Kang, Ji Wook Moon, Jung Ok Lee, Ji Hae Kim, Eun Jeong Jung, Su Jin Kim, Joo Yeon Oh, Sang Woo Wu, Pu Reum Lee, Sun Hwa Park, Hyeon Soo Kim
具有疾病敏感单倍型的非亲属供体脐带血移植后的1型糖尿病
IF 3.2 3区 医学Journal of Diabetes InvestigationPub Date : 2022-11-02 DOI: 10.1111/jdi.13939
Kensuke Matsumoto, Taisuke Matsuyama, Ritsu Sumiyoshi, Matsuo Takuji, Tadashi Yamamoto, Ryosuke Shirasaki, Haruko Tashiro
封面:蛋白质组学分析确定IRSp53和fastin是PRV输出和直接细胞-细胞传播的关键
IF 3.4 4区 生物学ProteomicsPub Date : 2019-12-02 DOI: 10.1002/pmic.201970201
Fei-Long Yu, Huan Miao, Jinjin Xia, Fan Jia, Huadong Wang, Fuqiang Xu, Lin Guo
来源期刊
INFORMS Transactions on Education
INFORMS Transactions on Education Social Sciences-Education
CiteScore
1.70
自引率
0.00%
发文量
34
审稿时长
52 weeks
期刊最新文献
Adventures with Grading Contracts in Operations Classes: A Preliminary Investigation Case Article–Forecasting at FoodMart: A Case on Cultural Diversity in Supply Chain Management Case Article—Three Mountain Communications: Fairness Considerations for Workplace Task Allocation Case—Three Mountain Communications: Considerations for Workplace Task Allocation Case Article—Budding with ERP: Information and Operations Management Challenges in a Nascent Industry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1