{"title":"铜及均匀合金青铜和黄铜在0.1 M NaCl溶液中的电化学腐蚀性能","authors":"Akib Abdullah Khan, Samiul Kaiser, Salim Kaiser","doi":"10.31349/revmexfis.69.051002","DOIUrl":null,"url":null,"abstract":"The influence of Al and Zn by 10 wt.% as alloying elements on the electrochemical corrosion behaviour of Cu-based alloy in 0.1 M NaCl solution is examined. Results from both electrochemical impedance spectroscopy method and potentiodynamic techniques indicate that the corrosion occurred at a higher rate for Zn and Al added alloys than pure Cu, where Zn added alloy shows the worst corrosion performance. Copper forms stable a protective layer of Cu2O, and CuO, as a result, has a lower corrosion rate. In case of Al and Zn added alloys, dealloying, as well as dissolution of additional Al2O3 and ZnO are responsible for higher corrosion rates, respectively. The surfaces are investigated by optical and scanning electron microscopy. Phases of different intermetallics within the Cu matrix are identified in the etched optical micrographs of the experimental alloys. The optical images after corrosion depict layers of oxides on the surfaces where the Zn-added alloys are highly affected, followed by Al-added alloys and pure Cu. Increased amounts of internal damage to the surface of the Zn-added alloy are visible in the SEM images. The EDX spectrum not only supports the presence of oxide layers but also claims that Zn-containing particles are dissolved at a greater rate than Al.","PeriodicalId":21538,"journal":{"name":"Revista Mexicana De Fisica","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrochemical corrosion performance of copper and uniformly alloyed bronze and brass in 0.1 M NaCl solution\",\"authors\":\"Akib Abdullah Khan, Samiul Kaiser, Salim Kaiser\",\"doi\":\"10.31349/revmexfis.69.051002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The influence of Al and Zn by 10 wt.% as alloying elements on the electrochemical corrosion behaviour of Cu-based alloy in 0.1 M NaCl solution is examined. Results from both electrochemical impedance spectroscopy method and potentiodynamic techniques indicate that the corrosion occurred at a higher rate for Zn and Al added alloys than pure Cu, where Zn added alloy shows the worst corrosion performance. Copper forms stable a protective layer of Cu2O, and CuO, as a result, has a lower corrosion rate. In case of Al and Zn added alloys, dealloying, as well as dissolution of additional Al2O3 and ZnO are responsible for higher corrosion rates, respectively. The surfaces are investigated by optical and scanning electron microscopy. Phases of different intermetallics within the Cu matrix are identified in the etched optical micrographs of the experimental alloys. The optical images after corrosion depict layers of oxides on the surfaces where the Zn-added alloys are highly affected, followed by Al-added alloys and pure Cu. Increased amounts of internal damage to the surface of the Zn-added alloy are visible in the SEM images. The EDX spectrum not only supports the presence of oxide layers but also claims that Zn-containing particles are dissolved at a greater rate than Al.\",\"PeriodicalId\":21538,\"journal\":{\"name\":\"Revista Mexicana De Fisica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Mexicana De Fisica\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.31349/revmexfis.69.051002\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Mexicana De Fisica","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.31349/revmexfis.69.051002","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
研究了添加10%的Al和Zn作为合金元素对cu基合金在0.1 M NaCl溶液中电化学腐蚀行为的影响。电化学阻抗谱和动电位分析结果表明,添加Zn和Al合金的腐蚀速率高于纯Cu,其中添加Zn合金的腐蚀性能最差。铜形成稳定的Cu2O保护层,CuO具有较低的腐蚀速率。在添加Al和Zn的情况下,合金的脱合金化以及Al2O3和ZnO的溶解分别导致了较高的腐蚀速率。用光学显微镜和扫描电镜对其表面进行了研究。在实验合金的蚀刻光学显微图中,可以识别出Cu基体中不同金属间化合物的相。腐蚀后的光学图像描绘了表面上的氧化物层,其中添加zn的合金受到严重影响,其次是添加al的合金和纯Cu。在SEM图像中可以看到,添加锌的合金表面的内部损伤量增加。EDX光谱不仅支持氧化层的存在,而且声称含锌颗粒的溶解速度比Al更快。
Electrochemical corrosion performance of copper and uniformly alloyed bronze and brass in 0.1 M NaCl solution
The influence of Al and Zn by 10 wt.% as alloying elements on the electrochemical corrosion behaviour of Cu-based alloy in 0.1 M NaCl solution is examined. Results from both electrochemical impedance spectroscopy method and potentiodynamic techniques indicate that the corrosion occurred at a higher rate for Zn and Al added alloys than pure Cu, where Zn added alloy shows the worst corrosion performance. Copper forms stable a protective layer of Cu2O, and CuO, as a result, has a lower corrosion rate. In case of Al and Zn added alloys, dealloying, as well as dissolution of additional Al2O3 and ZnO are responsible for higher corrosion rates, respectively. The surfaces are investigated by optical and scanning electron microscopy. Phases of different intermetallics within the Cu matrix are identified in the etched optical micrographs of the experimental alloys. The optical images after corrosion depict layers of oxides on the surfaces where the Zn-added alloys are highly affected, followed by Al-added alloys and pure Cu. Increased amounts of internal damage to the surface of the Zn-added alloy are visible in the SEM images. The EDX spectrum not only supports the presence of oxide layers but also claims that Zn-containing particles are dissolved at a greater rate than Al.
期刊介绍:
Durante los últimos años, los responsables de la Revista Mexicana de Física, la Revista Mexicana de Física E y la Revista Mexicana de Física S, hemos realizado esfuerzos para fortalecer la presencia de estas publicaciones en nuestra página Web ( http://rmf.smf.mx).