{"title":"多极点Hardy-Leray算子的Dirichlet问题","authors":"Huyuan Chen, Xiaowei Chen","doi":"10.1515/anona-2022-0320","DOIUrl":null,"url":null,"abstract":"Abstract Our aim of this article is to study qualitative properties of Dirichlet problems involving the Hardy-Leray operator ℒ V ≔ − Δ + V {{\\mathcal{ {\\mathcal L} }}}_{V}:= -\\Delta +V , where V ( x ) = ∑ i = 1 m μ i ∣ x − A i ∣ 2 V\\left(x)={\\sum }_{i=1}^{m}\\frac{{\\mu }_{i}}{{| x-{A}_{i}| }^{2}} , with μ i ≥ − ( N − 2 ) 2 4 {\\mu }_{i}\\ge -\\frac{{\\left(N-2)}^{2}}{4} being the Hardy-Leray potential containing the polars’ set A m = { A i : i = 1 , … , m } {{\\mathcal{A}}}_{m}=\\left\\{{A}_{i}:i=1,\\ldots ,m\\right\\} in R N {{\\mathbb{R}}}^{N} ( N ≥ 2 N\\ge 2 ). Since the inverse-square potentials are critical with respect to the Laplacian operator, the coefficients { μ i } i = 1 m {\\left\\{{\\mu }_{i}\\right\\}}_{i=1}^{m} and the locations of polars { A i } \\left\\{{A}_{i}\\right\\} play an important role in the properties of solutions to the related Poisson problems subject to zero Dirichlet boundary conditions. Let Ω \\Omega be a bounded domain containing A m {{\\mathcal{A}}}_{m} . First, we obtain increasing Dirichlet eigenvalues: ℒ V u = λ u in Ω , u = 0 on ∂ Ω , {{\\mathcal{ {\\mathcal L} }}}_{V}u=\\lambda u\\hspace{1.0em}{\\rm{in}}\\hspace{0.33em}\\Omega ,\\hspace{1.0em}u=0\\hspace{1.0em}{\\rm{on}}\\hspace{0.33em}\\partial \\Omega , and the positivity of the principle eigenvalue depends on the strength μ i {\\mu }_{i} and polars’ setting. When the spectral does not contain the origin, we then consider the weak solutions of the Poisson problem ( E ) ℒ V u = ν in Ω , u = 0 on ∂ Ω , \\left(E)\\hspace{1.0em}\\hspace{1.0em}{{\\mathcal{ {\\mathcal L} }}}_{V}u=\\nu \\hspace{1em}{\\rm{in}}\\hspace{0.33em}\\Omega ,\\hspace{1.0em}u=0\\hspace{1em}{\\rm{on}}\\hspace{0.33em}\\partial \\Omega , when ν \\nu belongs to L p ( Ω ) {L}^{p}\\left(\\Omega ) , with p > 2 N N + 2 p\\gt \\frac{2N}{N+2} in the variational framework, and we obtain a global weighted L ∞ {L}^{\\infty } estimate when p > N 2 p\\gt \\frac{N}{2} . When the principle eigenvalue is positive and ν \\nu is a Radon measure, we build a weighted distributional framework to show the existence of weak solutions of problem ( E ) \\left(E) . Moreover, via this weighted distributional framework, we can obtain a sharp assumption of ν ∈ C γ ( Ω ¯ \\ A m ) \\nu \\in {{\\mathcal{C}}}^{\\gamma }\\left(\\bar{\\Omega }\\setminus {{\\mathcal{A}}}_{m}) for the existence of isolated singular solutions for problem ( E ) \\left(E) .","PeriodicalId":51301,"journal":{"name":"Advances in Nonlinear Analysis","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dirichlet problems involving the Hardy-Leray operators with multiple polars\",\"authors\":\"Huyuan Chen, Xiaowei Chen\",\"doi\":\"10.1515/anona-2022-0320\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Our aim of this article is to study qualitative properties of Dirichlet problems involving the Hardy-Leray operator ℒ V ≔ − Δ + V {{\\\\mathcal{ {\\\\mathcal L} }}}_{V}:= -\\\\Delta +V , where V ( x ) = ∑ i = 1 m μ i ∣ x − A i ∣ 2 V\\\\left(x)={\\\\sum }_{i=1}^{m}\\\\frac{{\\\\mu }_{i}}{{| x-{A}_{i}| }^{2}} , with μ i ≥ − ( N − 2 ) 2 4 {\\\\mu }_{i}\\\\ge -\\\\frac{{\\\\left(N-2)}^{2}}{4} being the Hardy-Leray potential containing the polars’ set A m = { A i : i = 1 , … , m } {{\\\\mathcal{A}}}_{m}=\\\\left\\\\{{A}_{i}:i=1,\\\\ldots ,m\\\\right\\\\} in R N {{\\\\mathbb{R}}}^{N} ( N ≥ 2 N\\\\ge 2 ). Since the inverse-square potentials are critical with respect to the Laplacian operator, the coefficients { μ i } i = 1 m {\\\\left\\\\{{\\\\mu }_{i}\\\\right\\\\}}_{i=1}^{m} and the locations of polars { A i } \\\\left\\\\{{A}_{i}\\\\right\\\\} play an important role in the properties of solutions to the related Poisson problems subject to zero Dirichlet boundary conditions. Let Ω \\\\Omega be a bounded domain containing A m {{\\\\mathcal{A}}}_{m} . First, we obtain increasing Dirichlet eigenvalues: ℒ V u = λ u in Ω , u = 0 on ∂ Ω , {{\\\\mathcal{ {\\\\mathcal L} }}}_{V}u=\\\\lambda u\\\\hspace{1.0em}{\\\\rm{in}}\\\\hspace{0.33em}\\\\Omega ,\\\\hspace{1.0em}u=0\\\\hspace{1.0em}{\\\\rm{on}}\\\\hspace{0.33em}\\\\partial \\\\Omega , and the positivity of the principle eigenvalue depends on the strength μ i {\\\\mu }_{i} and polars’ setting. When the spectral does not contain the origin, we then consider the weak solutions of the Poisson problem ( E ) ℒ V u = ν in Ω , u = 0 on ∂ Ω , \\\\left(E)\\\\hspace{1.0em}\\\\hspace{1.0em}{{\\\\mathcal{ {\\\\mathcal L} }}}_{V}u=\\\\nu \\\\hspace{1em}{\\\\rm{in}}\\\\hspace{0.33em}\\\\Omega ,\\\\hspace{1.0em}u=0\\\\hspace{1em}{\\\\rm{on}}\\\\hspace{0.33em}\\\\partial \\\\Omega , when ν \\\\nu belongs to L p ( Ω ) {L}^{p}\\\\left(\\\\Omega ) , with p > 2 N N + 2 p\\\\gt \\\\frac{2N}{N+2} in the variational framework, and we obtain a global weighted L ∞ {L}^{\\\\infty } estimate when p > N 2 p\\\\gt \\\\frac{N}{2} . When the principle eigenvalue is positive and ν \\\\nu is a Radon measure, we build a weighted distributional framework to show the existence of weak solutions of problem ( E ) \\\\left(E) . Moreover, via this weighted distributional framework, we can obtain a sharp assumption of ν ∈ C γ ( Ω ¯ \\\\ A m ) \\\\nu \\\\in {{\\\\mathcal{C}}}^{\\\\gamma }\\\\left(\\\\bar{\\\\Omega }\\\\setminus {{\\\\mathcal{A}}}_{m}) for the existence of isolated singular solutions for problem ( E ) \\\\left(E) .\",\"PeriodicalId\":51301,\"journal\":{\"name\":\"Advances in Nonlinear Analysis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Nonlinear Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/anona-2022-0320\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Nonlinear Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2022-0320","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
摘要本文的目的是研究涉及Hardy-Leray算子的Dirichlet问题的定性性质ℒ V−Δ+V-{A}_{i} |}^{2}},其中μi≥−(N−2)2 4{\mu}_\{{A}_{i} :i=1,\ldots,m\right\}在R N{\mathbb{R}}^{N}中(N≥2N\ge2)。由于平方反比势对于拉普拉斯算子是关键的,因此系数{μi}i=1m{\lang1033\{\mu}_{i}\right}}_\{{A}_{i} 在零Dirichlet边界条件下相关Poisson问题解的性质中起着重要作用。设Ω\Omega是一个包含a m{\mathcal{a}}_{m}的有界域。首先,我们获得了增加的狄利克雷特征值:ℒ V u=λu,单位为Ω,u=0,在¦ΒΩ上,{\mathcal{\math L}}_{V}u=\lambda u\hspace{1.0em}{\rm{in}}\space{0.33em}\Omega,\space{1.0em}u=0\hspace{1.0em}{\rm{on}}\space{0.33em}\partial \Omega,并且主特征值的正性取决于强度μi{\mu}_{i}和polar的设置。当谱不包含原点时,我们考虑泊松问题(E)的弱解ℒ V u=¦Α,u=¦ΒΩ上的0,\left(E)\hspace{1.0em}\space{1.0em}{\mathcal{L}}_{V}u=\nu\hspace{1em}{\rm{in}}\space{0.33em}\Omega,\space{1.0em}u=0\hspace{1em}{\rm{on}}\space{0.33em}\partial\Omega,当Γ\nu属于Lp(Ω){L}^{p}\left(\Omega)时,在变分框架中p>2N+2p}{{N+2},并且当p>N2}{。当主特征值为正,且Γ\nu为Radon测度时,我们建立了一个加权分布框架来证明问题(E)\left(E)弱解的存在性。此外,通过这个加权分布框架,我们可以得到一个关于问题(E)\left(E)存在孤立奇异解的尖锐假设,即{\mathcal{C}}}^{\gamma}\left(\bar{\Omega}\setminus{\math cal{a}}}}_{m})中的Γ∈Cγ(Ω\am)\nu。
Dirichlet problems involving the Hardy-Leray operators with multiple polars
Abstract Our aim of this article is to study qualitative properties of Dirichlet problems involving the Hardy-Leray operator ℒ V ≔ − Δ + V {{\mathcal{ {\mathcal L} }}}_{V}:= -\Delta +V , where V ( x ) = ∑ i = 1 m μ i ∣ x − A i ∣ 2 V\left(x)={\sum }_{i=1}^{m}\frac{{\mu }_{i}}{{| x-{A}_{i}| }^{2}} , with μ i ≥ − ( N − 2 ) 2 4 {\mu }_{i}\ge -\frac{{\left(N-2)}^{2}}{4} being the Hardy-Leray potential containing the polars’ set A m = { A i : i = 1 , … , m } {{\mathcal{A}}}_{m}=\left\{{A}_{i}:i=1,\ldots ,m\right\} in R N {{\mathbb{R}}}^{N} ( N ≥ 2 N\ge 2 ). Since the inverse-square potentials are critical with respect to the Laplacian operator, the coefficients { μ i } i = 1 m {\left\{{\mu }_{i}\right\}}_{i=1}^{m} and the locations of polars { A i } \left\{{A}_{i}\right\} play an important role in the properties of solutions to the related Poisson problems subject to zero Dirichlet boundary conditions. Let Ω \Omega be a bounded domain containing A m {{\mathcal{A}}}_{m} . First, we obtain increasing Dirichlet eigenvalues: ℒ V u = λ u in Ω , u = 0 on ∂ Ω , {{\mathcal{ {\mathcal L} }}}_{V}u=\lambda u\hspace{1.0em}{\rm{in}}\hspace{0.33em}\Omega ,\hspace{1.0em}u=0\hspace{1.0em}{\rm{on}}\hspace{0.33em}\partial \Omega , and the positivity of the principle eigenvalue depends on the strength μ i {\mu }_{i} and polars’ setting. When the spectral does not contain the origin, we then consider the weak solutions of the Poisson problem ( E ) ℒ V u = ν in Ω , u = 0 on ∂ Ω , \left(E)\hspace{1.0em}\hspace{1.0em}{{\mathcal{ {\mathcal L} }}}_{V}u=\nu \hspace{1em}{\rm{in}}\hspace{0.33em}\Omega ,\hspace{1.0em}u=0\hspace{1em}{\rm{on}}\hspace{0.33em}\partial \Omega , when ν \nu belongs to L p ( Ω ) {L}^{p}\left(\Omega ) , with p > 2 N N + 2 p\gt \frac{2N}{N+2} in the variational framework, and we obtain a global weighted L ∞ {L}^{\infty } estimate when p > N 2 p\gt \frac{N}{2} . When the principle eigenvalue is positive and ν \nu is a Radon measure, we build a weighted distributional framework to show the existence of weak solutions of problem ( E ) \left(E) . Moreover, via this weighted distributional framework, we can obtain a sharp assumption of ν ∈ C γ ( Ω ¯ \ A m ) \nu \in {{\mathcal{C}}}^{\gamma }\left(\bar{\Omega }\setminus {{\mathcal{A}}}_{m}) for the existence of isolated singular solutions for problem ( E ) \left(E) .
期刊介绍:
Advances in Nonlinear Analysis (ANONA) aims to publish selected research contributions devoted to nonlinear problems coming from different areas, with particular reference to those introducing new techniques capable of solving a wide range of problems. The Journal focuses on papers that address significant problems in pure and applied nonlinear analysis. ANONA seeks to present the most significant advances in this field to a wide readership, including researchers and graduate students in mathematics, physics, and engineering.