微合金Mg-Zn-Ge合金是镁空气电池极具应用前景的阳极

IF 15.8 1区 材料科学 Q1 METALLURGY & METALLURGICAL ENGINEERING Journal of Magnesium and Alloys Pub Date : 2024-10-01 DOI:10.1016/j.jma.2023.05.004
Pingli Jiang , Depeng Li , Ruiqing Hou , Hong Yang , Junjie Yang , Shijie Zhu , Liguo Wang , Shaokang Guan
{"title":"微合金Mg-Zn-Ge合金是镁空气电池极具应用前景的阳极","authors":"Pingli Jiang ,&nbsp;Depeng Li ,&nbsp;Ruiqing Hou ,&nbsp;Hong Yang ,&nbsp;Junjie Yang ,&nbsp;Shijie Zhu ,&nbsp;Liguo Wang ,&nbsp;Shaokang Guan","doi":"10.1016/j.jma.2023.05.004","DOIUrl":null,"url":null,"abstract":"<div><div>Alloying is one of the effective approaches to boost the discharge property of magnesium (Mg) anodes for primary Mg-air batteries and recently micro-alloying is highly recommended at the aim of developing advanced primary Mg system. In this study, micro-alloyed extruded Mg0.5Zn0.2Ge (in wt.%) alloy is evaluated as an anode candidate for primary Mg-air batteries in both half-cell and Mg-air full cell configurations, in comparison with commercially accepted Mg anodes, typified by as-cast HP Mg and extruded AZ31 alloy. The corrosion behavior at open circuit potential (OCP) condition of the three materials is also compared through electrochemical tests. Mg0.5Zn0.2Ge alloy displays the most negative OCP value and the highest corrosion resistance at OCP. During discharge, Mg0.5Zn0.2Ge anode exhibits low wasteful-discharge rate and homogeneous dissolution that gives rise to the absence of “chunk effect”. Consequently, the anodic efficiency and specific capacity of Mg0.5Zn0.2Ge anode are superior to those of HP Mg and AZ31 anodes, e.g. 57.3% and 1257 mAh g<sup>−1</sup> at 1 mA cm<sup>−2</sup>. Additionally, Mg-air battery based on Mg0.5Zn0.2Ge anode offers higher cell voltage and specific energy than those assembled with HP Mg and AZ31 anodes, which can be further optimized by addition of electrolyte additives. Therefore, micro-alloyed Mg0.5Zn0.2Ge alloy can serve as a promising candidate for anode material of primary Mg-air batteries.</div></div>","PeriodicalId":16214,"journal":{"name":"Journal of Magnesium and Alloys","volume":"12 10","pages":"Pages 4157-4173"},"PeriodicalIF":15.8000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A micro-alloyed Mg-Zn-Ge alloy as promising anode for primary Mg-air batteries\",\"authors\":\"Pingli Jiang ,&nbsp;Depeng Li ,&nbsp;Ruiqing Hou ,&nbsp;Hong Yang ,&nbsp;Junjie Yang ,&nbsp;Shijie Zhu ,&nbsp;Liguo Wang ,&nbsp;Shaokang Guan\",\"doi\":\"10.1016/j.jma.2023.05.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Alloying is one of the effective approaches to boost the discharge property of magnesium (Mg) anodes for primary Mg-air batteries and recently micro-alloying is highly recommended at the aim of developing advanced primary Mg system. In this study, micro-alloyed extruded Mg0.5Zn0.2Ge (in wt.%) alloy is evaluated as an anode candidate for primary Mg-air batteries in both half-cell and Mg-air full cell configurations, in comparison with commercially accepted Mg anodes, typified by as-cast HP Mg and extruded AZ31 alloy. The corrosion behavior at open circuit potential (OCP) condition of the three materials is also compared through electrochemical tests. Mg0.5Zn0.2Ge alloy displays the most negative OCP value and the highest corrosion resistance at OCP. During discharge, Mg0.5Zn0.2Ge anode exhibits low wasteful-discharge rate and homogeneous dissolution that gives rise to the absence of “chunk effect”. Consequently, the anodic efficiency and specific capacity of Mg0.5Zn0.2Ge anode are superior to those of HP Mg and AZ31 anodes, e.g. 57.3% and 1257 mAh g<sup>−1</sup> at 1 mA cm<sup>−2</sup>. Additionally, Mg-air battery based on Mg0.5Zn0.2Ge anode offers higher cell voltage and specific energy than those assembled with HP Mg and AZ31 anodes, which can be further optimized by addition of electrolyte additives. Therefore, micro-alloyed Mg0.5Zn0.2Ge alloy can serve as a promising candidate for anode material of primary Mg-air batteries.</div></div>\",\"PeriodicalId\":16214,\"journal\":{\"name\":\"Journal of Magnesium and Alloys\",\"volume\":\"12 10\",\"pages\":\"Pages 4157-4173\"},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Magnesium and Alloys\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213956723001007\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnesium and Alloys","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213956723001007","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

合金化是提高原生镁-空气电池镁(Mg)阳极放电性能的有效方法之一,最近,为了开发先进的原生镁系统,微合金化备受推崇。本研究将微合金挤压 Mg0.5Zn0.2Ge(重量百分比)合金作为一次镁-空气电池的候选阳极,在半电池和镁-空气全电池两种配置下进行评估。此外,还通过电化学测试比较了三种材料在开路电位(OCP)条件下的腐蚀行为。Mg0.5Zn0.2Ge 合金的开路电位负值最大,开路电位下的耐腐蚀性最高。在放电过程中,Mg0.5Zn0.2Ge 阳极表现出较低的放电浪费率和均匀的溶解度,因而不存在 "大块效应"。因此,Mg0.5Zn0.2Ge 阳极的阳极效率和比容量优于 HP Mg 和 AZ31 阳极,例如在 1 mA cm-2 时分别为 57.3% 和 1257 mAh g-1。此外,基于 Mg0.5Zn0.2Ge 阳极的镁-空气电池比使用 HP Mg 和 AZ31 阳极组装的电池具有更高的电池电压和比能量,这可以通过添加电解质添加剂进一步优化。因此,微合金化的 Mg0.5Zn0.2Ge 合金有望成为一次镁空气电池的阳极材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A micro-alloyed Mg-Zn-Ge alloy as promising anode for primary Mg-air batteries
Alloying is one of the effective approaches to boost the discharge property of magnesium (Mg) anodes for primary Mg-air batteries and recently micro-alloying is highly recommended at the aim of developing advanced primary Mg system. In this study, micro-alloyed extruded Mg0.5Zn0.2Ge (in wt.%) alloy is evaluated as an anode candidate for primary Mg-air batteries in both half-cell and Mg-air full cell configurations, in comparison with commercially accepted Mg anodes, typified by as-cast HP Mg and extruded AZ31 alloy. The corrosion behavior at open circuit potential (OCP) condition of the three materials is also compared through electrochemical tests. Mg0.5Zn0.2Ge alloy displays the most negative OCP value and the highest corrosion resistance at OCP. During discharge, Mg0.5Zn0.2Ge anode exhibits low wasteful-discharge rate and homogeneous dissolution that gives rise to the absence of “chunk effect”. Consequently, the anodic efficiency and specific capacity of Mg0.5Zn0.2Ge anode are superior to those of HP Mg and AZ31 anodes, e.g. 57.3% and 1257 mAh g−1 at 1 mA cm−2. Additionally, Mg-air battery based on Mg0.5Zn0.2Ge anode offers higher cell voltage and specific energy than those assembled with HP Mg and AZ31 anodes, which can be further optimized by addition of electrolyte additives. Therefore, micro-alloyed Mg0.5Zn0.2Ge alloy can serve as a promising candidate for anode material of primary Mg-air batteries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Magnesium and Alloys
Journal of Magnesium and Alloys Engineering-Mechanics of Materials
CiteScore
20.20
自引率
14.80%
发文量
52
审稿时长
59 days
期刊介绍: The Journal of Magnesium and Alloys serves as a global platform for both theoretical and experimental studies in magnesium science and engineering. It welcomes submissions investigating various scientific and engineering factors impacting the metallurgy, processing, microstructure, properties, and applications of magnesium and alloys. The journal covers all aspects of magnesium and alloy research, including raw materials, alloy casting, extrusion and deformation, corrosion and surface treatment, joining and machining, simulation and modeling, microstructure evolution and mechanical properties, new alloy development, magnesium-based composites, bio-materials and energy materials, applications, and recycling.
期刊最新文献
Spatial mapping of the localized corrosion behavior of a magnesium alloy AZ31B tungsten inert gas weld An overview of RE-Mg-based alloys for hydrogen storage: Structure, properties, progresses and perspectives Direct bonding of AZ31B and ZrO2 induced by interfacial sono-oxidation reaction at a low temperature From macro-, through meso- to micro-scale: Densification behavior, deformation response and microstructural evolution of selective laser melted Mg-RE alloy Enhanced high-temperature strength of a Mg-4Sn-3Al-1 Zn alloy with good thermal stability via Mg2Sn precipitation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1