Hui-Cun Yu, Bang-Ying Tang, Huan Chen, Yang Xue, Jie Tang, Wan-Rong Yu, Bo Liu, Lei Shi
{"title":"边界层效应下的机载量子密钥分配","authors":"Hui-Cun Yu, Bang-Ying Tang, Huan Chen, Yang Xue, Jie Tang, Wan-Rong Yu, Bo Liu, Lei Shi","doi":"10.1140/epjqt/s40507-021-00115-w","DOIUrl":null,"url":null,"abstract":"<div><p>With the substantial progress of terrestrial fiber-based quantum networks and satellite-based quantum nodes, airborne quantum key distribution (QKD) is now becoming a flexible bond between terrestrial fiber and satellite, which is an efficient solution to establish a mobile, on-demand, and real-time coverage quantum network. However, the random distributed boundary layer is always surrounded to the surface of the aircraft when the flight speed larger than 0.3 Ma, which would introduce random wavefront aberration, jitter and extra intensity attenuation to the transmitted photons. In this article, we propose a performance evaluation scheme of airborne QKD with boundary layer effects. The analyzed results about the photon deflection angle and wavefront aberration effects, show that the aero-optical effects caused by the boundary layer can not be ignored, which would heavily decrease the final secure key rate. In our proposed airborne QKD scenario, the boundary layer would introduce ∼3.5 dB loss to the transmitted photons and decrease ∼70.9% of the secure key rate. With tolerated quantum bit error rate set to 8%, the suggested quantum communication azimuth angle between the aircraft and the ground station is within 55<sup>∘</sup>. Furthermore, the optimal beacon laser module and adaptive optics module are suggested to be employed, to improve the performance of airborne QKD system. Our detailed airborne QKD performance evaluation study can be performed to the future airborne quantum communication designs.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"8 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2021-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-021-00115-w","citationCount":"0","resultStr":"{\"title\":\"Airborne quantum key distribution with boundary layer effects\",\"authors\":\"Hui-Cun Yu, Bang-Ying Tang, Huan Chen, Yang Xue, Jie Tang, Wan-Rong Yu, Bo Liu, Lei Shi\",\"doi\":\"10.1140/epjqt/s40507-021-00115-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>With the substantial progress of terrestrial fiber-based quantum networks and satellite-based quantum nodes, airborne quantum key distribution (QKD) is now becoming a flexible bond between terrestrial fiber and satellite, which is an efficient solution to establish a mobile, on-demand, and real-time coverage quantum network. However, the random distributed boundary layer is always surrounded to the surface of the aircraft when the flight speed larger than 0.3 Ma, which would introduce random wavefront aberration, jitter and extra intensity attenuation to the transmitted photons. In this article, we propose a performance evaluation scheme of airborne QKD with boundary layer effects. The analyzed results about the photon deflection angle and wavefront aberration effects, show that the aero-optical effects caused by the boundary layer can not be ignored, which would heavily decrease the final secure key rate. In our proposed airborne QKD scenario, the boundary layer would introduce ∼3.5 dB loss to the transmitted photons and decrease ∼70.9% of the secure key rate. With tolerated quantum bit error rate set to 8%, the suggested quantum communication azimuth angle between the aircraft and the ground station is within 55<sup>∘</sup>. Furthermore, the optimal beacon laser module and adaptive optics module are suggested to be employed, to improve the performance of airborne QKD system. Our detailed airborne QKD performance evaluation study can be performed to the future airborne quantum communication designs.</p></div>\",\"PeriodicalId\":547,\"journal\":{\"name\":\"EPJ Quantum Technology\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2021-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-021-00115-w\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EPJ Quantum Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjqt/s40507-021-00115-w\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Quantum Technology","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1140/epjqt/s40507-021-00115-w","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
摘要
随着地面光纤量子网络和卫星量子节点的长足发展,机载量子密钥分发(QKD)正成为地面光纤和卫星之间的灵活纽带,是建立移动、按需、实时覆盖量子网络的有效解决方案。然而,当飞行速度大于 0.3 Ma 时,随机分布的边界层总是包围着飞行器表面,这会给传输的光子带来随机波前像差、抖动和额外的强度衰减。本文提出了一种具有边界层效应的机载 QKD 性能评估方案。对光子偏转角和波前像差效应的分析结果表明,边界层造成的航空光学效应不容忽视,这将严重降低最终的安全密钥率。在我们提出的机载 QKD 方案中,边界层会给传输光子带来 3.5 dB 的损耗,使安全密钥率降低 70.9%。在容许量子比特误差率设定为 8%的情况下,建议飞机与地面站之间的量子通信方位角在 55 ∘ 以内。此外,还建议采用最佳信标激光模块和自适应光学模块,以提高机载 QKD 系统的性能。我们详细的机载 QKD 性能评估研究可用于未来的机载量子通信设计。
Airborne quantum key distribution with boundary layer effects
With the substantial progress of terrestrial fiber-based quantum networks and satellite-based quantum nodes, airborne quantum key distribution (QKD) is now becoming a flexible bond between terrestrial fiber and satellite, which is an efficient solution to establish a mobile, on-demand, and real-time coverage quantum network. However, the random distributed boundary layer is always surrounded to the surface of the aircraft when the flight speed larger than 0.3 Ma, which would introduce random wavefront aberration, jitter and extra intensity attenuation to the transmitted photons. In this article, we propose a performance evaluation scheme of airborne QKD with boundary layer effects. The analyzed results about the photon deflection angle and wavefront aberration effects, show that the aero-optical effects caused by the boundary layer can not be ignored, which would heavily decrease the final secure key rate. In our proposed airborne QKD scenario, the boundary layer would introduce ∼3.5 dB loss to the transmitted photons and decrease ∼70.9% of the secure key rate. With tolerated quantum bit error rate set to 8%, the suggested quantum communication azimuth angle between the aircraft and the ground station is within 55∘. Furthermore, the optimal beacon laser module and adaptive optics module are suggested to be employed, to improve the performance of airborne QKD system. Our detailed airborne QKD performance evaluation study can be performed to the future airborne quantum communication designs.
期刊介绍:
Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics.
EPJ Quantum Technology covers theoretical and experimental advances in subjects including but not limited to the following:
Quantum measurement, metrology and lithography
Quantum complex systems, networks and cellular automata
Quantum electromechanical systems
Quantum optomechanical systems
Quantum machines, engineering and nanorobotics
Quantum control theory
Quantum information, communication and computation
Quantum thermodynamics
Quantum metamaterials
The effect of Casimir forces on micro- and nano-electromechanical systems
Quantum biology
Quantum sensing
Hybrid quantum systems
Quantum simulations.