{"title":"根据离散和连续模型研究和确定液体介质中空化气泡运动的声学参数","authors":"I. Bernyk, I. Nazarenko, O. Luhovskyi","doi":"10.20535/2521-1943.2022.6.2.269921","DOIUrl":null,"url":null,"abstract":"In the work, the study and determination of the acoustic parameters of the movement of a cavitation bubble in a liquid medium according to discrete and continuous models was carried out. The research is based on the hypothesis that the determination of the effective parameters of the work process of acoustic processing is implemented by applying a transitional physical model from a discrete to a continuous type of processing of the technological environment. The obtained analytical dependences allow to calculate the amplitude of oscillations and the frequency of natural oscillations. With the help of the specified formulas, it is possible to determine the zones of amplification or attenuation of the amplitude of oscillations for different frequencies of oscillations. The proposed formula for determining the frequency of natural oscillations, which takes into account changes in the properties of the medium from homogeneous at the initial stage to the appearance of cavitation bubbles at the specified frequency of natural oscillations. Numerical values of intensity, pressure, amplitude of oscillations, velocity, acceleration, viscosity and maximum bubble radius are given. The obtained numerical values can be used in practical calculations of acoustic processing parameters of different nature and properties of technological environments.","PeriodicalId":32423,"journal":{"name":"Mechanics and Advanced Technologies","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research and determination of the acoustic parameters of the movement of a cavitation bubble in a liquid medium according to discrete and continuous models\",\"authors\":\"I. Bernyk, I. Nazarenko, O. Luhovskyi\",\"doi\":\"10.20535/2521-1943.2022.6.2.269921\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the work, the study and determination of the acoustic parameters of the movement of a cavitation bubble in a liquid medium according to discrete and continuous models was carried out. The research is based on the hypothesis that the determination of the effective parameters of the work process of acoustic processing is implemented by applying a transitional physical model from a discrete to a continuous type of processing of the technological environment. The obtained analytical dependences allow to calculate the amplitude of oscillations and the frequency of natural oscillations. With the help of the specified formulas, it is possible to determine the zones of amplification or attenuation of the amplitude of oscillations for different frequencies of oscillations. The proposed formula for determining the frequency of natural oscillations, which takes into account changes in the properties of the medium from homogeneous at the initial stage to the appearance of cavitation bubbles at the specified frequency of natural oscillations. Numerical values of intensity, pressure, amplitude of oscillations, velocity, acceleration, viscosity and maximum bubble radius are given. The obtained numerical values can be used in practical calculations of acoustic processing parameters of different nature and properties of technological environments.\",\"PeriodicalId\":32423,\"journal\":{\"name\":\"Mechanics and Advanced Technologies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanics and Advanced Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20535/2521-1943.2022.6.2.269921\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics and Advanced Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20535/2521-1943.2022.6.2.269921","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Research and determination of the acoustic parameters of the movement of a cavitation bubble in a liquid medium according to discrete and continuous models
In the work, the study and determination of the acoustic parameters of the movement of a cavitation bubble in a liquid medium according to discrete and continuous models was carried out. The research is based on the hypothesis that the determination of the effective parameters of the work process of acoustic processing is implemented by applying a transitional physical model from a discrete to a continuous type of processing of the technological environment. The obtained analytical dependences allow to calculate the amplitude of oscillations and the frequency of natural oscillations. With the help of the specified formulas, it is possible to determine the zones of amplification or attenuation of the amplitude of oscillations for different frequencies of oscillations. The proposed formula for determining the frequency of natural oscillations, which takes into account changes in the properties of the medium from homogeneous at the initial stage to the appearance of cavitation bubbles at the specified frequency of natural oscillations. Numerical values of intensity, pressure, amplitude of oscillations, velocity, acceleration, viscosity and maximum bubble radius are given. The obtained numerical values can be used in practical calculations of acoustic processing parameters of different nature and properties of technological environments.