在线免费访问等离子体物理实验

IF 0.7 4区 物理与天体物理 Q4 CHEMISTRY, INORGANIC & NUCLEAR Nukleonika Pub Date : 2023-03-01 DOI:10.2478/nuka-2023-0006
Pedro A. Mendes Rossa, Pavel Kuriscák, J. N. Silva, José Veiga, J. Loureiro, João Oliveira, Daniel Hachmeister, H. Fernandes
{"title":"在线免费访问等离子体物理实验","authors":"Pedro A. Mendes Rossa, Pavel Kuriscák, J. N. Silva, José Veiga, J. Loureiro, João Oliveira, Daniel Hachmeister, H. Fernandes","doi":"10.2478/nuka-2023-0006","DOIUrl":null,"url":null,"abstract":"Abstract Remote controlled laboratories had a great push during the COVID-19 pandemic. In fact, they were already out there but lacking in visibility. This external trigger pushed the academy to face a global challenge to start offering remote experiments more consistently and maturely. Instituto Superior Técnico (IST) has been offering several remote experiments since 2000 but with the need for an update due to technological aging. As such, the framework for remote experiments in education (FREE) was created based on new web technologies. In addition to the most diverse experiments that had already been developed, FREE includes two experiments that aimed at advanced-level physics students: the Langmuir probe and the electromagnetic (EM) cavity. Both allow users to configure the various parameters and to access the results in real time or check back later. All this access is done using a browser (on a PC or mobile phone) without the need to install additional software. The results of an experimental execution are stored in a database and are downloadable, allowing users to do various analyses and to determine the corresponding plasma density and temperature. In this paper, we will introduce how FREE was used in the implementation of both experiments and give an insight into their didactic approach, such as: (i) how to perform an experimental execution, (ii) the typical data set obtained with, and (iii) the corresponding analysis necessary for the user to retrieve information from it.","PeriodicalId":19467,"journal":{"name":"Nukleonika","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Online and FREE access to plasma physics experiments\",\"authors\":\"Pedro A. Mendes Rossa, Pavel Kuriscák, J. N. Silva, José Veiga, J. Loureiro, João Oliveira, Daniel Hachmeister, H. Fernandes\",\"doi\":\"10.2478/nuka-2023-0006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Remote controlled laboratories had a great push during the COVID-19 pandemic. In fact, they were already out there but lacking in visibility. This external trigger pushed the academy to face a global challenge to start offering remote experiments more consistently and maturely. Instituto Superior Técnico (IST) has been offering several remote experiments since 2000 but with the need for an update due to technological aging. As such, the framework for remote experiments in education (FREE) was created based on new web technologies. In addition to the most diverse experiments that had already been developed, FREE includes two experiments that aimed at advanced-level physics students: the Langmuir probe and the electromagnetic (EM) cavity. Both allow users to configure the various parameters and to access the results in real time or check back later. All this access is done using a browser (on a PC or mobile phone) without the need to install additional software. The results of an experimental execution are stored in a database and are downloadable, allowing users to do various analyses and to determine the corresponding plasma density and temperature. In this paper, we will introduce how FREE was used in the implementation of both experiments and give an insight into their didactic approach, such as: (i) how to perform an experimental execution, (ii) the typical data set obtained with, and (iii) the corresponding analysis necessary for the user to retrieve information from it.\",\"PeriodicalId\":19467,\"journal\":{\"name\":\"Nukleonika\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nukleonika\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.2478/nuka-2023-0006\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nukleonika","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.2478/nuka-2023-0006","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

摘要远程控制实验室在新冠肺炎大流行期间发挥了巨大作用。事实上,他们已经在那里,但缺乏可见性。这一外部触发因素促使该学院面临全球挑战,开始更一致、更成熟地提供远程实验。高级技术研究所(IST)自2000年以来一直在提供几项远程实验,但由于技术老化,需要更新。因此,远程教育实验框架(FREE)是基于新的网络技术创建的。除了已经开发的最多样化的实验外,FREE还包括两个针对高级物理学生的实验:朗缪尔探针和电磁(EM)腔。两者都允许用户配置各种参数,并实时访问结果或稍后查看。所有这些访问都是使用浏览器(在PC或手机上)完成的,无需安装其他软件。实验执行的结果存储在数据库中并可下载,允许用户进行各种分析并确定相应的等离子体密度和温度。在本文中,我们将介绍FREE是如何在两个实验的实施中使用的,并深入了解它们的教学方法,例如:(i)如何执行实验,(ii)使用获得的典型数据集,以及(iii)用户从中检索信息所需的相应分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Online and FREE access to plasma physics experiments
Abstract Remote controlled laboratories had a great push during the COVID-19 pandemic. In fact, they were already out there but lacking in visibility. This external trigger pushed the academy to face a global challenge to start offering remote experiments more consistently and maturely. Instituto Superior Técnico (IST) has been offering several remote experiments since 2000 but with the need for an update due to technological aging. As such, the framework for remote experiments in education (FREE) was created based on new web technologies. In addition to the most diverse experiments that had already been developed, FREE includes two experiments that aimed at advanced-level physics students: the Langmuir probe and the electromagnetic (EM) cavity. Both allow users to configure the various parameters and to access the results in real time or check back later. All this access is done using a browser (on a PC or mobile phone) without the need to install additional software. The results of an experimental execution are stored in a database and are downloadable, allowing users to do various analyses and to determine the corresponding plasma density and temperature. In this paper, we will introduce how FREE was used in the implementation of both experiments and give an insight into their didactic approach, such as: (i) how to perform an experimental execution, (ii) the typical data set obtained with, and (iii) the corresponding analysis necessary for the user to retrieve information from it.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nukleonika
Nukleonika 物理-无机化学与核化学
CiteScore
2.00
自引率
0.00%
发文量
5
审稿时长
4-8 weeks
期刊介绍: "Nukleonika" is an international peer-reviewed, scientific journal publishing original top quality papers on fundamental, experimental, applied and theoretical aspects of nuclear sciences. The fields of research include: radiochemistry, radiation measurements, application of radionuclides in various branches of science and technology, chemistry of f-block elements, radiation chemistry, radiation physics, activation analysis, nuclear medicine, radiobiology, radiation safety, nuclear industrial electronics, environmental protection, radioactive wastes, nuclear technologies in material and process engineering, radioisotope diagnostic methods of engineering objects, nuclear physics, nuclear reactors and nuclear power, reactor physics, nuclear safety, fuel cycle, reactor calculations, nuclear chemical engineering, nuclear fusion, plasma physics etc.
期刊最新文献
Gamma radiation shielding properties of (x)Bi2O3–(0.5 – x)ZnO–0.2B2O3–0.3SiO2 glass system No evidence of the long-term in vitro toxicity of Aeroxide P25 TiO2 nanoparticles in three mammalian cell lines despite the initial reduction of cellular mitochondrial activity Comparison of the neutronic properties of the (Th-233U)O2, (Th-233U)C, and (Th-233U)N fuels in small long-life PWR cores with 300, 400, and 500 MWth of power Professor W. Alexander Van Hook (1936-2023) Numerical studies of plasma edge in W7-X with 3D FINDIF code
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1