双层网络平衡优化问题中有效梯度估计的迭代反向传播方法

IF 4.4 2区 工程技术 Q1 OPERATIONS RESEARCH & MANAGEMENT SCIENCE Transportation Science Pub Date : 2023-08-11 DOI:10.1287/trsc.2021.0110
A. Patwary, Shuling Wang, H. Lo
{"title":"双层网络平衡优化问题中有效梯度估计的迭代反向传播方法","authors":"A. Patwary, Shuling Wang, H. Lo","doi":"10.1287/trsc.2021.0110","DOIUrl":null,"url":null,"abstract":"Network optimization or network design with an embedded traffic assignment (TA) to model user equilibrium principle, sometimes expressed as bilevel problems or mathematical programs with equilibrium constraints (MPEC), is at the heart of transportation planning and operations. For applications to large-scale multimodal networks with high dimensional decision variables, the problem is nontrivial, to say the least. General-purpose algorithms and problem-specific bilevel formulations have been proposed in the past to solve small problems for demonstration purposes. Research gap, however, exists in developing efficient solution methods for large-scale problems in both static and dynamic contexts. This paper proposes an efficient gradient estimation method called Iterative Backpropagation (IB) for network optimization problems with an embedded static TA model. IB exploits the iterative structure of the TA solution procedure and simultaneously calculates the gradients while the TA process converges. IB does not require any additional function evaluation and consequently scales very well with higher dimensions. We apply the proposed approach to origin-destination (OD) estimation, an MPEC problem, of the Hong Kong multimodal network with 49,806 decision variables, 8,797 nodes, 18,207 links, 2,684 transit routes, and 165,509 OD pairs. The calibrated model performs well in matching the link counts. Specifically, the IB-gradient based optimization technique reduces the link volume squared error by 98%, mean absolute percentage error (MAPE) from 95.29% to 21.23%, and the average GEH statistics from 24.18 to 6.09 compared with the noncalibrated case. The framework, even though applied to OD estimation in this paper, is applicable to a wide variety of optimization problems with an embedded TA model, opening up an efficient way to solve large-scale MPEC or bilevel problems. Funding: The study is supported by IVADO Postdoctoral Fellowship scheme 2021, HSBC 150th Anniversary Charity Programme HKBF17RG01, National Science Foundation of China (No. 71890970, No. 71890974), General Research Fund (No. 16212819, No. 16207920) of the HKSAR Government, and the Hong Kong PhD Fellowship.","PeriodicalId":51202,"journal":{"name":"Transportation Science","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Iterative Backpropagation Method for Efficient Gradient Estimation in Bilevel Network Equilibrium Optimization Problems\",\"authors\":\"A. Patwary, Shuling Wang, H. Lo\",\"doi\":\"10.1287/trsc.2021.0110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Network optimization or network design with an embedded traffic assignment (TA) to model user equilibrium principle, sometimes expressed as bilevel problems or mathematical programs with equilibrium constraints (MPEC), is at the heart of transportation planning and operations. For applications to large-scale multimodal networks with high dimensional decision variables, the problem is nontrivial, to say the least. General-purpose algorithms and problem-specific bilevel formulations have been proposed in the past to solve small problems for demonstration purposes. Research gap, however, exists in developing efficient solution methods for large-scale problems in both static and dynamic contexts. This paper proposes an efficient gradient estimation method called Iterative Backpropagation (IB) for network optimization problems with an embedded static TA model. IB exploits the iterative structure of the TA solution procedure and simultaneously calculates the gradients while the TA process converges. IB does not require any additional function evaluation and consequently scales very well with higher dimensions. We apply the proposed approach to origin-destination (OD) estimation, an MPEC problem, of the Hong Kong multimodal network with 49,806 decision variables, 8,797 nodes, 18,207 links, 2,684 transit routes, and 165,509 OD pairs. The calibrated model performs well in matching the link counts. Specifically, the IB-gradient based optimization technique reduces the link volume squared error by 98%, mean absolute percentage error (MAPE) from 95.29% to 21.23%, and the average GEH statistics from 24.18 to 6.09 compared with the noncalibrated case. The framework, even though applied to OD estimation in this paper, is applicable to a wide variety of optimization problems with an embedded TA model, opening up an efficient way to solve large-scale MPEC or bilevel problems. Funding: The study is supported by IVADO Postdoctoral Fellowship scheme 2021, HSBC 150th Anniversary Charity Programme HKBF17RG01, National Science Foundation of China (No. 71890970, No. 71890974), General Research Fund (No. 16212819, No. 16207920) of the HKSAR Government, and the Hong Kong PhD Fellowship.\",\"PeriodicalId\":51202,\"journal\":{\"name\":\"Transportation Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2023-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportation Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1287/trsc.2021.0110\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1287/trsc.2021.0110","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

网络优化或使用嵌入式交通分配(TA)对用户均衡原理进行建模的网络设计,有时表示为具有均衡约束的双层问题或数学程序(MPEC),是交通规划和运营的核心。对于具有高维决策变量的大规模多模式网络的应用,至少可以说,这个问题是不平凡的。过去已经提出了通用算法和特定于问题的双层公式来解决小问题,用于演示目的。然而,在为静态和动态环境中的大规模问题开发有效的解决方法方面存在研究空白。针对嵌入静态TA模型的网络优化问题,本文提出了一种高效的梯度估计方法——迭代反向传播(IB)。IB利用TA求解过程的迭代结构,并在TA过程收敛时同时计算梯度。IB不需要任何额外的功能评估,因此可以很好地扩展到更高的维度。我们将所提出的方法应用于香港多模式网络的原始目的地(OD)估计,这是一个MPEC问题,该网络具有49806个决策变量、8797个节点、18207个链路、2684条中转路线和165509个OD对。校准后的模型在匹配链接计数方面表现良好。具体而言,与未校准的情况相比,基于IB梯度的优化技术将链路体积平方误差降低了98%,平均绝对百分比误差(MAPE)从95.29%降低到21.23%,平均GEH统计从24.18降低到6.09。尽管本文将该框架应用于OD估计,但它适用于嵌入TA模型的各种优化问题,为解决大规模MPEC或双层问题开辟了一条有效的途径。资助:该研究由IVADO博士后研究金计划2021、汇丰银行150周年慈善计划HKBF17RG01、中国国家科学基金会(编号71890970,编号71890974)、香港特区政府普通研究基金(编号16212819,编号16207920)和香港博士研究金资助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Iterative Backpropagation Method for Efficient Gradient Estimation in Bilevel Network Equilibrium Optimization Problems
Network optimization or network design with an embedded traffic assignment (TA) to model user equilibrium principle, sometimes expressed as bilevel problems or mathematical programs with equilibrium constraints (MPEC), is at the heart of transportation planning and operations. For applications to large-scale multimodal networks with high dimensional decision variables, the problem is nontrivial, to say the least. General-purpose algorithms and problem-specific bilevel formulations have been proposed in the past to solve small problems for demonstration purposes. Research gap, however, exists in developing efficient solution methods for large-scale problems in both static and dynamic contexts. This paper proposes an efficient gradient estimation method called Iterative Backpropagation (IB) for network optimization problems with an embedded static TA model. IB exploits the iterative structure of the TA solution procedure and simultaneously calculates the gradients while the TA process converges. IB does not require any additional function evaluation and consequently scales very well with higher dimensions. We apply the proposed approach to origin-destination (OD) estimation, an MPEC problem, of the Hong Kong multimodal network with 49,806 decision variables, 8,797 nodes, 18,207 links, 2,684 transit routes, and 165,509 OD pairs. The calibrated model performs well in matching the link counts. Specifically, the IB-gradient based optimization technique reduces the link volume squared error by 98%, mean absolute percentage error (MAPE) from 95.29% to 21.23%, and the average GEH statistics from 24.18 to 6.09 compared with the noncalibrated case. The framework, even though applied to OD estimation in this paper, is applicable to a wide variety of optimization problems with an embedded TA model, opening up an efficient way to solve large-scale MPEC or bilevel problems. Funding: The study is supported by IVADO Postdoctoral Fellowship scheme 2021, HSBC 150th Anniversary Charity Programme HKBF17RG01, National Science Foundation of China (No. 71890970, No. 71890974), General Research Fund (No. 16212819, No. 16207920) of the HKSAR Government, and the Hong Kong PhD Fellowship.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Transportation Science
Transportation Science 工程技术-运筹学与管理科学
CiteScore
8.30
自引率
10.90%
发文量
111
审稿时长
12 months
期刊介绍: Transportation Science, published quarterly by INFORMS, is the flagship journal of the Transportation Science and Logistics Society of INFORMS. As the foremost scientific journal in the cross-disciplinary operational research field of transportation analysis, Transportation Science publishes high-quality original contributions and surveys on phenomena associated with all modes of transportation, present and prospective, including mainly all levels of planning, design, economic, operational, and social aspects. Transportation Science focuses primarily on fundamental theories, coupled with observational and experimental studies of transportation and logistics phenomena and processes, mathematical models, advanced methodologies and novel applications in transportation and logistics systems analysis, planning and design. The journal covers a broad range of topics that include vehicular and human traffic flow theories, models and their application to traffic operations and management, strategic, tactical, and operational planning of transportation and logistics systems; performance analysis methods and system design and optimization; theories and analysis methods for network and spatial activity interaction, equilibrium and dynamics; economics of transportation system supply and evaluation; methodologies for analysis of transportation user behavior and the demand for transportation and logistics services. Transportation Science is international in scope, with editors from nations around the globe. The editorial board reflects the diverse interdisciplinary interests of the transportation science and logistics community, with members that hold primary affiliations in engineering (civil, industrial, and aeronautical), physics, economics, applied mathematics, and business.
期刊最新文献
CARMA: Fair and Efficient Bottleneck Congestion Management via Nontradable Karma Credits Genetic Algorithms with Neural Cost Predictor for Solving Hierarchical Vehicle Routing Problems On-Demand Meal Delivery: A Markov Model for Circulating Couriers Physics-Informed Machine Learning for Calibrating Macroscopic Traffic Flow Models Heatmap Design for Probabilistic Driver Repositioning in Crowdsourced Delivery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1