{"title":"双层网络平衡优化问题中有效梯度估计的迭代反向传播方法","authors":"A. Patwary, Shuling Wang, H. Lo","doi":"10.1287/trsc.2021.0110","DOIUrl":null,"url":null,"abstract":"Network optimization or network design with an embedded traffic assignment (TA) to model user equilibrium principle, sometimes expressed as bilevel problems or mathematical programs with equilibrium constraints (MPEC), is at the heart of transportation planning and operations. For applications to large-scale multimodal networks with high dimensional decision variables, the problem is nontrivial, to say the least. General-purpose algorithms and problem-specific bilevel formulations have been proposed in the past to solve small problems for demonstration purposes. Research gap, however, exists in developing efficient solution methods for large-scale problems in both static and dynamic contexts. This paper proposes an efficient gradient estimation method called Iterative Backpropagation (IB) for network optimization problems with an embedded static TA model. IB exploits the iterative structure of the TA solution procedure and simultaneously calculates the gradients while the TA process converges. IB does not require any additional function evaluation and consequently scales very well with higher dimensions. We apply the proposed approach to origin-destination (OD) estimation, an MPEC problem, of the Hong Kong multimodal network with 49,806 decision variables, 8,797 nodes, 18,207 links, 2,684 transit routes, and 165,509 OD pairs. The calibrated model performs well in matching the link counts. Specifically, the IB-gradient based optimization technique reduces the link volume squared error by 98%, mean absolute percentage error (MAPE) from 95.29% to 21.23%, and the average GEH statistics from 24.18 to 6.09 compared with the noncalibrated case. The framework, even though applied to OD estimation in this paper, is applicable to a wide variety of optimization problems with an embedded TA model, opening up an efficient way to solve large-scale MPEC or bilevel problems. Funding: The study is supported by IVADO Postdoctoral Fellowship scheme 2021, HSBC 150th Anniversary Charity Programme HKBF17RG01, National Science Foundation of China (No. 71890970, No. 71890974), General Research Fund (No. 16212819, No. 16207920) of the HKSAR Government, and the Hong Kong PhD Fellowship.","PeriodicalId":51202,"journal":{"name":"Transportation Science","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Iterative Backpropagation Method for Efficient Gradient Estimation in Bilevel Network Equilibrium Optimization Problems\",\"authors\":\"A. Patwary, Shuling Wang, H. Lo\",\"doi\":\"10.1287/trsc.2021.0110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Network optimization or network design with an embedded traffic assignment (TA) to model user equilibrium principle, sometimes expressed as bilevel problems or mathematical programs with equilibrium constraints (MPEC), is at the heart of transportation planning and operations. For applications to large-scale multimodal networks with high dimensional decision variables, the problem is nontrivial, to say the least. General-purpose algorithms and problem-specific bilevel formulations have been proposed in the past to solve small problems for demonstration purposes. Research gap, however, exists in developing efficient solution methods for large-scale problems in both static and dynamic contexts. This paper proposes an efficient gradient estimation method called Iterative Backpropagation (IB) for network optimization problems with an embedded static TA model. IB exploits the iterative structure of the TA solution procedure and simultaneously calculates the gradients while the TA process converges. IB does not require any additional function evaluation and consequently scales very well with higher dimensions. We apply the proposed approach to origin-destination (OD) estimation, an MPEC problem, of the Hong Kong multimodal network with 49,806 decision variables, 8,797 nodes, 18,207 links, 2,684 transit routes, and 165,509 OD pairs. The calibrated model performs well in matching the link counts. Specifically, the IB-gradient based optimization technique reduces the link volume squared error by 98%, mean absolute percentage error (MAPE) from 95.29% to 21.23%, and the average GEH statistics from 24.18 to 6.09 compared with the noncalibrated case. The framework, even though applied to OD estimation in this paper, is applicable to a wide variety of optimization problems with an embedded TA model, opening up an efficient way to solve large-scale MPEC or bilevel problems. Funding: The study is supported by IVADO Postdoctoral Fellowship scheme 2021, HSBC 150th Anniversary Charity Programme HKBF17RG01, National Science Foundation of China (No. 71890970, No. 71890974), General Research Fund (No. 16212819, No. 16207920) of the HKSAR Government, and the Hong Kong PhD Fellowship.\",\"PeriodicalId\":51202,\"journal\":{\"name\":\"Transportation Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2023-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportation Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1287/trsc.2021.0110\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1287/trsc.2021.0110","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
Iterative Backpropagation Method for Efficient Gradient Estimation in Bilevel Network Equilibrium Optimization Problems
Network optimization or network design with an embedded traffic assignment (TA) to model user equilibrium principle, sometimes expressed as bilevel problems or mathematical programs with equilibrium constraints (MPEC), is at the heart of transportation planning and operations. For applications to large-scale multimodal networks with high dimensional decision variables, the problem is nontrivial, to say the least. General-purpose algorithms and problem-specific bilevel formulations have been proposed in the past to solve small problems for demonstration purposes. Research gap, however, exists in developing efficient solution methods for large-scale problems in both static and dynamic contexts. This paper proposes an efficient gradient estimation method called Iterative Backpropagation (IB) for network optimization problems with an embedded static TA model. IB exploits the iterative structure of the TA solution procedure and simultaneously calculates the gradients while the TA process converges. IB does not require any additional function evaluation and consequently scales very well with higher dimensions. We apply the proposed approach to origin-destination (OD) estimation, an MPEC problem, of the Hong Kong multimodal network with 49,806 decision variables, 8,797 nodes, 18,207 links, 2,684 transit routes, and 165,509 OD pairs. The calibrated model performs well in matching the link counts. Specifically, the IB-gradient based optimization technique reduces the link volume squared error by 98%, mean absolute percentage error (MAPE) from 95.29% to 21.23%, and the average GEH statistics from 24.18 to 6.09 compared with the noncalibrated case. The framework, even though applied to OD estimation in this paper, is applicable to a wide variety of optimization problems with an embedded TA model, opening up an efficient way to solve large-scale MPEC or bilevel problems. Funding: The study is supported by IVADO Postdoctoral Fellowship scheme 2021, HSBC 150th Anniversary Charity Programme HKBF17RG01, National Science Foundation of China (No. 71890970, No. 71890974), General Research Fund (No. 16212819, No. 16207920) of the HKSAR Government, and the Hong Kong PhD Fellowship.
期刊介绍:
Transportation Science, published quarterly by INFORMS, is the flagship journal of the Transportation Science and Logistics Society of INFORMS. As the foremost scientific journal in the cross-disciplinary operational research field of transportation analysis, Transportation Science publishes high-quality original contributions and surveys on phenomena associated with all modes of transportation, present and prospective, including mainly all levels of planning, design, economic, operational, and social aspects. Transportation Science focuses primarily on fundamental theories, coupled with observational and experimental studies of transportation and logistics phenomena and processes, mathematical models, advanced methodologies and novel applications in transportation and logistics systems analysis, planning and design. The journal covers a broad range of topics that include vehicular and human traffic flow theories, models and their application to traffic operations and management, strategic, tactical, and operational planning of transportation and logistics systems; performance analysis methods and system design and optimization; theories and analysis methods for network and spatial activity interaction, equilibrium and dynamics; economics of transportation system supply and evaluation; methodologies for analysis of transportation user behavior and the demand for transportation and logistics services.
Transportation Science is international in scope, with editors from nations around the globe. The editorial board reflects the diverse interdisciplinary interests of the transportation science and logistics community, with members that hold primary affiliations in engineering (civil, industrial, and aeronautical), physics, economics, applied mathematics, and business.