{"title":"基于WaveNet的河流水位预测卷积神经网络","authors":"Jun Chen, Yan Huang, Teng Wu, Jing Yan","doi":"10.2166/hydro.2023.174","DOIUrl":null,"url":null,"abstract":"\n \n River water level prediction (WLP) plays an important role in flood control, navigation, and water supply. In this study, a WaveNet-based convolutional neural network (WCNN) with a lightweight structure and good parallelism was developed to improve the prediction accuracy and time effectiveness of WLP. It was applied to predict 1/2/3 days the water levels at the Waizhou gauging station of the Ganjiang River (GR) in China, and it was compared with two recurrent neural networks (long short-term memory (LSTM) and gated recurrent unit (GRU)). The results showed that the WCNN model achieved the best prediction performance with the fewest training parameters and time. Compared with the LSTM and GRU models in the 1-day ahead prediction, the training parameters were reduced from 73,851 and 55,851 to 32,937, respectively. The root mean square error (RMSE) was reduced from 0.071 and 0.076 to 0.057, respectively. The mean absolute error (MAE) was reduced from 0.052 and 0.059 to 0.038, respectively. The Nash–Sutcliffe efficiency (NSE) and coefficient of determination (R2) both increased to 0.998. This result indicated that the improved model was more efficient for WLP.","PeriodicalId":54801,"journal":{"name":"Journal of Hydroinformatics","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A WaveNet-based convolutional neural network for river water level prediction\",\"authors\":\"Jun Chen, Yan Huang, Teng Wu, Jing Yan\",\"doi\":\"10.2166/hydro.2023.174\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n \\n River water level prediction (WLP) plays an important role in flood control, navigation, and water supply. In this study, a WaveNet-based convolutional neural network (WCNN) with a lightweight structure and good parallelism was developed to improve the prediction accuracy and time effectiveness of WLP. It was applied to predict 1/2/3 days the water levels at the Waizhou gauging station of the Ganjiang River (GR) in China, and it was compared with two recurrent neural networks (long short-term memory (LSTM) and gated recurrent unit (GRU)). The results showed that the WCNN model achieved the best prediction performance with the fewest training parameters and time. Compared with the LSTM and GRU models in the 1-day ahead prediction, the training parameters were reduced from 73,851 and 55,851 to 32,937, respectively. The root mean square error (RMSE) was reduced from 0.071 and 0.076 to 0.057, respectively. The mean absolute error (MAE) was reduced from 0.052 and 0.059 to 0.038, respectively. The Nash–Sutcliffe efficiency (NSE) and coefficient of determination (R2) both increased to 0.998. This result indicated that the improved model was more efficient for WLP.\",\"PeriodicalId\":54801,\"journal\":{\"name\":\"Journal of Hydroinformatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydroinformatics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2166/hydro.2023.174\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydroinformatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2166/hydro.2023.174","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
A WaveNet-based convolutional neural network for river water level prediction
River water level prediction (WLP) plays an important role in flood control, navigation, and water supply. In this study, a WaveNet-based convolutional neural network (WCNN) with a lightweight structure and good parallelism was developed to improve the prediction accuracy and time effectiveness of WLP. It was applied to predict 1/2/3 days the water levels at the Waizhou gauging station of the Ganjiang River (GR) in China, and it was compared with two recurrent neural networks (long short-term memory (LSTM) and gated recurrent unit (GRU)). The results showed that the WCNN model achieved the best prediction performance with the fewest training parameters and time. Compared with the LSTM and GRU models in the 1-day ahead prediction, the training parameters were reduced from 73,851 and 55,851 to 32,937, respectively. The root mean square error (RMSE) was reduced from 0.071 and 0.076 to 0.057, respectively. The mean absolute error (MAE) was reduced from 0.052 and 0.059 to 0.038, respectively. The Nash–Sutcliffe efficiency (NSE) and coefficient of determination (R2) both increased to 0.998. This result indicated that the improved model was more efficient for WLP.
期刊介绍:
Journal of Hydroinformatics is a peer-reviewed journal devoted to the application of information technology in the widest sense to problems of the aquatic environment. It promotes Hydroinformatics as a cross-disciplinary field of study, combining technological, human-sociological and more general environmental interests, including an ethical perspective.