基于随机截尾数据的反威布尔分布估计

IF 1.6 Q1 STATISTICS & PROBABILITY Statistica Pub Date : 2019-07-01 DOI:10.6092/ISSN.1973-2201/8414
Kapil Kumar, I. Kumar
{"title":"基于随机截尾数据的反威布尔分布估计","authors":"Kapil Kumar, I. Kumar","doi":"10.6092/ISSN.1973-2201/8414","DOIUrl":null,"url":null,"abstract":"This article deals with the estimation of the parameters and reliability characteristics in inverse Weibull (IW) distribution based on the random censoring model. The censoring distribution is also taken as an IW distribution. Maximum likelihood estimators of the parameters, survival and failure rate functions are derived. Asymptotic confidence intervals of the parameters based on the Fisher information matrix are constructed. Bayes estimators of the parameters, survival and failure rate functions under squared error loss function using non-informative and gamma informative priors are developed. Furthermore, Bayes estimates are obtained using Tierney-Kadane's approximation method and Markov chain Monte Carlo (MCMC) techniques. Also, highest posterior density (HPD) credible intervals of the parameters based on MCMC techniques are constructed. A simulation study is conducted to compare the performance of various estimates. Finally, a randomly censored real data set supports the estimation procedures developed in this article.","PeriodicalId":45117,"journal":{"name":"Statistica","volume":"79 1","pages":"47-74"},"PeriodicalIF":1.6000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Estimation in Inverse Weibull Distribution Based on Randomly Censored Data\",\"authors\":\"Kapil Kumar, I. Kumar\",\"doi\":\"10.6092/ISSN.1973-2201/8414\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article deals with the estimation of the parameters and reliability characteristics in inverse Weibull (IW) distribution based on the random censoring model. The censoring distribution is also taken as an IW distribution. Maximum likelihood estimators of the parameters, survival and failure rate functions are derived. Asymptotic confidence intervals of the parameters based on the Fisher information matrix are constructed. Bayes estimators of the parameters, survival and failure rate functions under squared error loss function using non-informative and gamma informative priors are developed. Furthermore, Bayes estimates are obtained using Tierney-Kadane's approximation method and Markov chain Monte Carlo (MCMC) techniques. Also, highest posterior density (HPD) credible intervals of the parameters based on MCMC techniques are constructed. A simulation study is conducted to compare the performance of various estimates. Finally, a randomly censored real data set supports the estimation procedures developed in this article.\",\"PeriodicalId\":45117,\"journal\":{\"name\":\"Statistica\",\"volume\":\"79 1\",\"pages\":\"47-74\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6092/ISSN.1973-2201/8414\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6092/ISSN.1973-2201/8414","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 12

摘要

本文研究了基于随机截尾模型的反威布尔分布中的参数估计和可靠性特性。审查分发也被视为IW分发。导出了参数、生存率和失败率函数的最大似然估计量。基于Fisher信息矩阵构造了参数的渐近置信区间。利用非信息先验和伽玛信息先验,建立了误差平方损失函数下的参数、生存率和失败率函数的贝叶斯估计。此外,使用Tierney-Kadane近似方法和马尔可夫链蒙特卡罗(MCMC)技术获得了贝叶斯估计。此外,基于MCMC技术构造了参数的最高后验密度(HPD)可信区间。进行了一项模拟研究,以比较各种估计的性能。最后,一个随机截尾的真实数据集支持本文开发的估计程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Estimation in Inverse Weibull Distribution Based on Randomly Censored Data
This article deals with the estimation of the parameters and reliability characteristics in inverse Weibull (IW) distribution based on the random censoring model. The censoring distribution is also taken as an IW distribution. Maximum likelihood estimators of the parameters, survival and failure rate functions are derived. Asymptotic confidence intervals of the parameters based on the Fisher information matrix are constructed. Bayes estimators of the parameters, survival and failure rate functions under squared error loss function using non-informative and gamma informative priors are developed. Furthermore, Bayes estimates are obtained using Tierney-Kadane's approximation method and Markov chain Monte Carlo (MCMC) techniques. Also, highest posterior density (HPD) credible intervals of the parameters based on MCMC techniques are constructed. A simulation study is conducted to compare the performance of various estimates. Finally, a randomly censored real data set supports the estimation procedures developed in this article.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistica
Statistica STATISTICS & PROBABILITY-
CiteScore
1.70
自引率
0.00%
发文量
0
审稿时长
10 weeks
期刊最新文献
A New Discrete Distribution: Properties, Characterizations, Modeling Real Count Data, Bayesian and Non-Bayesian Estimations Polynomial Columns-Parameter Symmetry Model and its Decomposition for Square Contingency Tables A Class of Univariate Non-Mesokurtic Distributions Using a Continuous Uniform Symmetrizer and Chi Generator The Marshall-Olkin Gompertz Distribution: Properties and Applications Estimation of Cumulative Incidence Function in the Presence of Middle Censoring Using Improper Gompertz Distribution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1