Benedikt Meinecke, David Werbunat, Qasim Haidari, Matthias Linder, C. Waldschmidt
{"title":"相干雷达网络的近场补偿","authors":"Benedikt Meinecke, David Werbunat, Qasim Haidari, Matthias Linder, C. Waldschmidt","doi":"10.1109/LMWC.2022.3170721","DOIUrl":null,"url":null,"abstract":"With radar networks, the resolution of critical radar parameters such as Doppler and angle can be improved compared to a single radar sensor. As the network’s aperture is considerably larger than that of a single radar, a much higher angular resolution is achieved. However, with a large aperture, range-dependent phase deviations, that is, near-field effects, occur and affect the angle estimation. In this work, these near-field effects are evaluated exemplarily for a coherent network. Furthermore, a new strategy to compensate for those network near-field effects is proposed and demonstrated based on measurements. The benefits of the near-field compensation are emphasized by comparing the network’s angle-estimation capabilities with and without compensated near-field effects.","PeriodicalId":13130,"journal":{"name":"IEEE Microwave and Wireless Components Letters","volume":"32 1","pages":"1251-1254"},"PeriodicalIF":2.9000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Near-Field Compensation for Coherent Radar Networks\",\"authors\":\"Benedikt Meinecke, David Werbunat, Qasim Haidari, Matthias Linder, C. Waldschmidt\",\"doi\":\"10.1109/LMWC.2022.3170721\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With radar networks, the resolution of critical radar parameters such as Doppler and angle can be improved compared to a single radar sensor. As the network’s aperture is considerably larger than that of a single radar, a much higher angular resolution is achieved. However, with a large aperture, range-dependent phase deviations, that is, near-field effects, occur and affect the angle estimation. In this work, these near-field effects are evaluated exemplarily for a coherent network. Furthermore, a new strategy to compensate for those network near-field effects is proposed and demonstrated based on measurements. The benefits of the near-field compensation are emphasized by comparing the network’s angle-estimation capabilities with and without compensated near-field effects.\",\"PeriodicalId\":13130,\"journal\":{\"name\":\"IEEE Microwave and Wireless Components Letters\",\"volume\":\"32 1\",\"pages\":\"1251-1254\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Microwave and Wireless Components Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/LMWC.2022.3170721\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Microwave and Wireless Components Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/LMWC.2022.3170721","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Near-Field Compensation for Coherent Radar Networks
With radar networks, the resolution of critical radar parameters such as Doppler and angle can be improved compared to a single radar sensor. As the network’s aperture is considerably larger than that of a single radar, a much higher angular resolution is achieved. However, with a large aperture, range-dependent phase deviations, that is, near-field effects, occur and affect the angle estimation. In this work, these near-field effects are evaluated exemplarily for a coherent network. Furthermore, a new strategy to compensate for those network near-field effects is proposed and demonstrated based on measurements. The benefits of the near-field compensation are emphasized by comparing the network’s angle-estimation capabilities with and without compensated near-field effects.
期刊介绍:
The IEEE Microwave and Wireless Components Letters (MWCL) publishes four-page papers (3 pages of text + up to 1 page of references) that focus on microwave theory, techniques and applications as they relate to components, devices, circuits, biological effects, and systems involving the generation, modulation, demodulation, control, transmission, and detection of microwave signals. This includes scientific, technical, medical and industrial activities. Microwave theory and techniques relates to electromagnetic waves in the frequency range of a few MHz and a THz; other spectral regions and wave types are included within the scope of the MWCL whenever basic microwave theory and techniques can yield useful results. Generally, this occurs in the theory of wave propagation in structures with dimensions comparable to a wavelength, and in the related techniques for analysis and design.