背根神经节冷冻提取物对不同年龄大鼠骰子组织学稳定性和子宫收缩能力的影响

H. Nesteruk, V. Ustichenko, N. Alabedalkarim, V. Padalko, O. Protsenko, Ievgen Legach
{"title":"背根神经节冷冻提取物对不同年龄大鼠骰子组织学稳定性和子宫收缩能力的影响","authors":"H. Nesteruk, V. Ustichenko, N. Alabedalkarim, V. Padalko, O. Protsenko, Ievgen Legach","doi":"10.15407/cryo31.03.258","DOIUrl":null,"url":null,"abstract":"To date, the number of women giving birth to their first child in late reproductive age is increasing around the world. This stipulates a need in designing the new approaches to restore the uterine contractile activity. In this paper, the histological features of uterus and its contractile activity have been experimentally studied in differently aged rats after the dorsal root ganglia cryoextract (DRGCE) administration. The cryoextract was derived from dorsal root ganglia of neonatal piglets by three-fold freezing down to –196°C in saline, followed by thawing at room temperature, homogenization and centrifugation. Here, we used the female rats of reproductive age (RA, 6-month-old) and those of late reproductive age (LRA, 14-month-old). Animals of both age groups received intraperitoneally either DRGCE (experimental groups) or saline (control groups) for 9 days by 0.2 ml. To days 28–29 after administration beginning the animals were sacrificed and the uterine fragments were taken for histological examination and study of oxytocin (OT)-induced uterine contractile activity (UCA). The strength of OT-induced uterine isometric contraction was found to decrease by 28.6% in LRA rats vs. the RA ones. The DRGCE administration to LRA rats increased the UCA indices, namely the contractile frequency, contractile amplitude and strength of isometric contraction augmented by 25, 9.8 and 30% respectively, as compared with the group of the same age without DRGCE introduction. This effect was observed on the background normal uterine histological structure and unchanged myometrial thickness.","PeriodicalId":53457,"journal":{"name":"Problems of Cryobiology and Cryomedicine","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Impact of Dorsal Root Ganglia Cryoextract on Histological Steatures in Dices and Contractility of Uterus in Differently Aged Rats\",\"authors\":\"H. Nesteruk, V. Ustichenko, N. Alabedalkarim, V. Padalko, O. Protsenko, Ievgen Legach\",\"doi\":\"10.15407/cryo31.03.258\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To date, the number of women giving birth to their first child in late reproductive age is increasing around the world. This stipulates a need in designing the new approaches to restore the uterine contractile activity. In this paper, the histological features of uterus and its contractile activity have been experimentally studied in differently aged rats after the dorsal root ganglia cryoextract (DRGCE) administration. The cryoextract was derived from dorsal root ganglia of neonatal piglets by three-fold freezing down to –196°C in saline, followed by thawing at room temperature, homogenization and centrifugation. Here, we used the female rats of reproductive age (RA, 6-month-old) and those of late reproductive age (LRA, 14-month-old). Animals of both age groups received intraperitoneally either DRGCE (experimental groups) or saline (control groups) for 9 days by 0.2 ml. To days 28–29 after administration beginning the animals were sacrificed and the uterine fragments were taken for histological examination and study of oxytocin (OT)-induced uterine contractile activity (UCA). The strength of OT-induced uterine isometric contraction was found to decrease by 28.6% in LRA rats vs. the RA ones. The DRGCE administration to LRA rats increased the UCA indices, namely the contractile frequency, contractile amplitude and strength of isometric contraction augmented by 25, 9.8 and 30% respectively, as compared with the group of the same age without DRGCE introduction. This effect was observed on the background normal uterine histological structure and unchanged myometrial thickness.\",\"PeriodicalId\":53457,\"journal\":{\"name\":\"Problems of Cryobiology and Cryomedicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Problems of Cryobiology and Cryomedicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15407/cryo31.03.258\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Problems of Cryobiology and Cryomedicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/cryo31.03.258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 1

摘要

迄今为止,在世界范围内,晚育妇女生育第一胎的人数正在增加。这就要求设计恢复子宫收缩活动的新方法。本文通过实验研究了不同年龄大鼠背根神经节冷冻提取液(DRGCE)后子宫的组织学特征及其收缩活动。从新生仔猪背根神经节中提取冷冻提取物,在生理盐水中三次冷冻至-196°C,然后在室温下解冻,均质和离心。本实验选用育龄雌性大鼠(RA, 6月龄)和晚期育龄雌性大鼠(LRA, 14月龄)。两组动物分别腹腔注射DRGCE(实验组)或生理盐水(对照组)0.2 ml,持续9天。给药后28-29天,处死动物,取子宫碎片进行组织学检查和催产素(OT)诱导的子宫收缩活动(UCA)研究。ot诱导的子宫等长收缩强度比RA大鼠降低28.6%。与未加DRGCE组相比,DRGCE使LRA大鼠的UCA指数(即收缩频率、收缩幅度和等距收缩强度)分别提高了25%、9.8和30%。这种效果是在子宫组织结构正常、子宫肌层厚度不变的背景下观察到的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Impact of Dorsal Root Ganglia Cryoextract on Histological Steatures in Dices and Contractility of Uterus in Differently Aged Rats
To date, the number of women giving birth to their first child in late reproductive age is increasing around the world. This stipulates a need in designing the new approaches to restore the uterine contractile activity. In this paper, the histological features of uterus and its contractile activity have been experimentally studied in differently aged rats after the dorsal root ganglia cryoextract (DRGCE) administration. The cryoextract was derived from dorsal root ganglia of neonatal piglets by three-fold freezing down to –196°C in saline, followed by thawing at room temperature, homogenization and centrifugation. Here, we used the female rats of reproductive age (RA, 6-month-old) and those of late reproductive age (LRA, 14-month-old). Animals of both age groups received intraperitoneally either DRGCE (experimental groups) or saline (control groups) for 9 days by 0.2 ml. To days 28–29 after administration beginning the animals were sacrificed and the uterine fragments were taken for histological examination and study of oxytocin (OT)-induced uterine contractile activity (UCA). The strength of OT-induced uterine isometric contraction was found to decrease by 28.6% in LRA rats vs. the RA ones. The DRGCE administration to LRA rats increased the UCA indices, namely the contractile frequency, contractile amplitude and strength of isometric contraction augmented by 25, 9.8 and 30% respectively, as compared with the group of the same age without DRGCE introduction. This effect was observed on the background normal uterine histological structure and unchanged myometrial thickness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Problems of Cryobiology and Cryomedicine
Problems of Cryobiology and Cryomedicine Medicine-Medicine (miscellaneous)
CiteScore
0.60
自引率
0.00%
发文量
9
期刊介绍: The Journal publishes the reviews and original papers on cryobiological and cryomedical research, in particular the elucidation of mechanisms of injuries occurring in biological objects and caused by the influence of low and ultra low temperatures; natural resistance of biologicals to cold and their recovery post effect; the development of effective methods of cryoprotection and technology of storage of biological resources under hypothermic and ultra low temperatures, application of hypothermia, cryotherapy and cryopreserved biologicals for treating various pathologies; cell and tissue based therapies and other issues of low-temperature biology and medicine, as well as development of devices and equipment for low temperature biology and medicine. The journal covers all topics related to low temperature biology, medicine and engineering. These include but are not limited to: low temperature storage of biologicals (human, animal or plant cells, tissues, and organs), including preparation for storage, thawing/warming, cell and tissue culturing etc. response of biologicals to low temperature; cold adaptation of animals and plants; utilisation of low temperature in medicine; experimental and clinical transplantation, cell and tissue based therapies; developing of cryobiological and cryomedical devices; organisation and functioning of low temperature banks etc.
期刊最新文献
Quarter-Century Experience in Cryopreservation of Human Oocytes by Vitrifi cation. What Has Been Achieved and What is Next? Therapeutic Hypothermia and Cell Therapy Change Cognitive Functions of Spontaneously Hypertensive Rats Can Cold-Tolerant Hybrids Be Created by Crossing Cold-Tolerant Parental Lines? Brain Cortex Morphology in Rats After Cold Exposures Cryobiology and Cryomedicine Techniques’ Boosting in Wartime
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1