Shuo Mao, Daniel Van Hout, Kai Zhang, Jin Woo Lee, Wing Ng, Hongzhou Xu, M. Fox, Jun Li
{"title":"跨声速喷嘴导叶端壁的上游射流冷却和双腔平面泄漏冷却","authors":"Shuo Mao, Daniel Van Hout, Kai Zhang, Jin Woo Lee, Wing Ng, Hongzhou Xu, M. Fox, Jun Li","doi":"10.1115/1.4062180","DOIUrl":null,"url":null,"abstract":"\n This paper presents an experimental and computational study on implementing a dual cavity slashface cooling scheme on the thermal performance for the first stage nozzle guide vane with an axisymmetric, converging endwall. An upstream dual-row, staggered cylindrical hole cooling scheme provided purged coolant. The study was conducted under representative engine conditions of Maexit = 0.85 and Reexit,Cax = 1.5×106. Data were collected and analyzed using infrared thermography to map the endwall heat transfer performance throughout the passage. A flow visualization study was employed to gather qualitative insights into the endwall flow field. In addition, a complimentary CFD study was carried out to understand the endwall flow ingestion and egress behavior near the slashface. Results indicate that the dual-plenum slashface scheme leads to a unique ingestion-egression-ingestion-egression pattern. The ingestion and egression suppress the upstream coolant attachment at mid-passage near the suction side but create a favorable coolant coverage downstream of the slashface tail-end. The study also compared the dual-plenum design with the single-plenum design and concluded that the dual-plenum slashface is superior in film cooling performance.","PeriodicalId":49966,"journal":{"name":"Journal of Turbomachinery-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Upstream Jet Cooling and Dual Cavity Slashface Leakage Cooling on a Transonic Nozzle Guide Vane Endwall\",\"authors\":\"Shuo Mao, Daniel Van Hout, Kai Zhang, Jin Woo Lee, Wing Ng, Hongzhou Xu, M. Fox, Jun Li\",\"doi\":\"10.1115/1.4062180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This paper presents an experimental and computational study on implementing a dual cavity slashface cooling scheme on the thermal performance for the first stage nozzle guide vane with an axisymmetric, converging endwall. An upstream dual-row, staggered cylindrical hole cooling scheme provided purged coolant. The study was conducted under representative engine conditions of Maexit = 0.85 and Reexit,Cax = 1.5×106. Data were collected and analyzed using infrared thermography to map the endwall heat transfer performance throughout the passage. A flow visualization study was employed to gather qualitative insights into the endwall flow field. In addition, a complimentary CFD study was carried out to understand the endwall flow ingestion and egress behavior near the slashface. Results indicate that the dual-plenum slashface scheme leads to a unique ingestion-egression-ingestion-egression pattern. The ingestion and egression suppress the upstream coolant attachment at mid-passage near the suction side but create a favorable coolant coverage downstream of the slashface tail-end. The study also compared the dual-plenum design with the single-plenum design and concluded that the dual-plenum slashface is superior in film cooling performance.\",\"PeriodicalId\":49966,\"journal\":{\"name\":\"Journal of Turbomachinery-Transactions of the Asme\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Turbomachinery-Transactions of the Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4062180\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Turbomachinery-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4062180","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Upstream Jet Cooling and Dual Cavity Slashface Leakage Cooling on a Transonic Nozzle Guide Vane Endwall
This paper presents an experimental and computational study on implementing a dual cavity slashface cooling scheme on the thermal performance for the first stage nozzle guide vane with an axisymmetric, converging endwall. An upstream dual-row, staggered cylindrical hole cooling scheme provided purged coolant. The study was conducted under representative engine conditions of Maexit = 0.85 and Reexit,Cax = 1.5×106. Data were collected and analyzed using infrared thermography to map the endwall heat transfer performance throughout the passage. A flow visualization study was employed to gather qualitative insights into the endwall flow field. In addition, a complimentary CFD study was carried out to understand the endwall flow ingestion and egress behavior near the slashface. Results indicate that the dual-plenum slashface scheme leads to a unique ingestion-egression-ingestion-egression pattern. The ingestion and egression suppress the upstream coolant attachment at mid-passage near the suction side but create a favorable coolant coverage downstream of the slashface tail-end. The study also compared the dual-plenum design with the single-plenum design and concluded that the dual-plenum slashface is superior in film cooling performance.
期刊介绍:
The Journal of Turbomachinery publishes archival-quality, peer-reviewed technical papers that advance the state-of-the-art of turbomachinery technology related to gas turbine engines. The broad scope of the subject matter includes the fluid dynamics, heat transfer, and aeromechanics technology associated with the design, analysis, modeling, testing, and performance of turbomachinery. Emphasis is placed on gas-path technologies associated with axial compressors, centrifugal compressors, and turbines.
Topics: Aerodynamic design, analysis, and test of compressor and turbine blading; Compressor stall, surge, and operability issues; Heat transfer phenomena and film cooling design, analysis, and testing in turbines; Aeromechanical instabilities; Computational fluid dynamics (CFD) applied to turbomachinery, boundary layer development, measurement techniques, and cavity and leaking flows.