{"title":"Sb添加对低温无铅Sn–8Zn–3Bi焊料合金蠕变行为的影响","authors":"Guangyuan Ren, M. Collins","doi":"10.1108/ssmt-05-2020-0023","DOIUrl":null,"url":null,"abstract":"This paper aims to investigate the creep behaviour of the recently developed Sn–8Zn–3Bi–xSb (x = 0, 0.5, 1.0 and 1.5) low temperature lead-free solder alloys.,An in-house compressive test rig was developed to perform creep tests under stresses of 20–40 MPa and temperature range 25°C–75 °C. Dorn power law and Garofalo hyperbolic sine law were used to model the secondary creep rate.,High coefficient of determination R2 of 0.99 is achieved for both the models. It was found that the activation energy of Sn–8Zn–3Bi solder alloy can be significantly increased with addition of Sb, by 60% to 90 kJ/mol approximately, whereas the secondary creep exponent falls in the range 3–7. Improved creep resistance is attributed to solid solution strengthening introduced by micro-alloying. Creep mechanisms that govern the deformation of these newly developed lead-free solder alloys have also been proposed.,The findings are expected to fill the gap of knowledge on creep behaviour of these newly developed solder alloys, which are possible alternatives as lead-free interconnecting material in low temperature electronic assembly.","PeriodicalId":49499,"journal":{"name":"Soldering & Surface Mount Technology","volume":"33 1","pages":"159-169"},"PeriodicalIF":1.7000,"publicationDate":"2021-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1108/ssmt-05-2020-0023","citationCount":"2","resultStr":"{\"title\":\"Effect of Sb additions on the creep behaviour of low temperature lead-free Sn–8Zn–3Bi solder alloy\",\"authors\":\"Guangyuan Ren, M. Collins\",\"doi\":\"10.1108/ssmt-05-2020-0023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper aims to investigate the creep behaviour of the recently developed Sn–8Zn–3Bi–xSb (x = 0, 0.5, 1.0 and 1.5) low temperature lead-free solder alloys.,An in-house compressive test rig was developed to perform creep tests under stresses of 20–40 MPa and temperature range 25°C–75 °C. Dorn power law and Garofalo hyperbolic sine law were used to model the secondary creep rate.,High coefficient of determination R2 of 0.99 is achieved for both the models. It was found that the activation energy of Sn–8Zn–3Bi solder alloy can be significantly increased with addition of Sb, by 60% to 90 kJ/mol approximately, whereas the secondary creep exponent falls in the range 3–7. Improved creep resistance is attributed to solid solution strengthening introduced by micro-alloying. Creep mechanisms that govern the deformation of these newly developed lead-free solder alloys have also been proposed.,The findings are expected to fill the gap of knowledge on creep behaviour of these newly developed solder alloys, which are possible alternatives as lead-free interconnecting material in low temperature electronic assembly.\",\"PeriodicalId\":49499,\"journal\":{\"name\":\"Soldering & Surface Mount Technology\",\"volume\":\"33 1\",\"pages\":\"159-169\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2021-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1108/ssmt-05-2020-0023\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soldering & Surface Mount Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1108/ssmt-05-2020-0023\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soldering & Surface Mount Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1108/ssmt-05-2020-0023","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Effect of Sb additions on the creep behaviour of low temperature lead-free Sn–8Zn–3Bi solder alloy
This paper aims to investigate the creep behaviour of the recently developed Sn–8Zn–3Bi–xSb (x = 0, 0.5, 1.0 and 1.5) low temperature lead-free solder alloys.,An in-house compressive test rig was developed to perform creep tests under stresses of 20–40 MPa and temperature range 25°C–75 °C. Dorn power law and Garofalo hyperbolic sine law were used to model the secondary creep rate.,High coefficient of determination R2 of 0.99 is achieved for both the models. It was found that the activation energy of Sn–8Zn–3Bi solder alloy can be significantly increased with addition of Sb, by 60% to 90 kJ/mol approximately, whereas the secondary creep exponent falls in the range 3–7. Improved creep resistance is attributed to solid solution strengthening introduced by micro-alloying. Creep mechanisms that govern the deformation of these newly developed lead-free solder alloys have also been proposed.,The findings are expected to fill the gap of knowledge on creep behaviour of these newly developed solder alloys, which are possible alternatives as lead-free interconnecting material in low temperature electronic assembly.
期刊介绍:
Soldering & Surface Mount Technology seeks to make an important contribution to the advancement of research and application within the technical body of knowledge and expertise in this vital area. Soldering & Surface Mount Technology compliments its sister publications; Circuit World and Microelectronics International.
The journal covers all aspects of SMT from alloys, pastes and fluxes, to reliability and environmental effects, and is currently providing an important dissemination route for new knowledge on lead-free solders and processes. The journal comprises a multidisciplinary study of the key materials and technologies used to assemble state of the art functional electronic devices. The key focus is on assembling devices and interconnecting components via soldering, whilst also embracing a broad range of related approaches.