一种可解释的基于注意的深度学习犯罪预测模型

IF 1.2 Q4 REMOTE SENSING ACM Transactions on Spatial Algorithms and Systems Pub Date : 2020-12-16 DOI:10.1145/3582274
Yeasir Rayhan, T. Hashem
{"title":"一种可解释的基于注意的深度学习犯罪预测模型","authors":"Yeasir Rayhan, T. Hashem","doi":"10.1145/3582274","DOIUrl":null,"url":null,"abstract":"Accuracy and interpretability are two essential properties for a crime prediction model. Accurate prediction of future crime occurrences along with the reason behind a prediction would allow us to plan the crime prevention steps accordingly. The key challenge in developing the model is to capture the non-linear and dynamic spatial dependency and temporal patterns of a specific crime category, while keeping the underlying structure of the model interpretable. In this article, we develop AIST, an Attention-based Interpretable Spatio Temporal Network for crime prediction. AIST models the dynamic spatio-temporal correlations for a crime category based on past crime occurrences, external features (e.g., traffic flow and point of interest information) and recurring trends of crime. Extensive experiments show that AIST outperforms the state-of-the-art techniques in terms of accuracy (e.g., AIST shows a decrease of 4.1% on mean average error and 7.45% on mean square error for the Chicago 2019 crime dataset) and interpretability.1","PeriodicalId":43641,"journal":{"name":"ACM Transactions on Spatial Algorithms and Systems","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2020-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"AIST: An Interpretable Attention-Based Deep Learning Model for Crime Prediction\",\"authors\":\"Yeasir Rayhan, T. Hashem\",\"doi\":\"10.1145/3582274\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accuracy and interpretability are two essential properties for a crime prediction model. Accurate prediction of future crime occurrences along with the reason behind a prediction would allow us to plan the crime prevention steps accordingly. The key challenge in developing the model is to capture the non-linear and dynamic spatial dependency and temporal patterns of a specific crime category, while keeping the underlying structure of the model interpretable. In this article, we develop AIST, an Attention-based Interpretable Spatio Temporal Network for crime prediction. AIST models the dynamic spatio-temporal correlations for a crime category based on past crime occurrences, external features (e.g., traffic flow and point of interest information) and recurring trends of crime. Extensive experiments show that AIST outperforms the state-of-the-art techniques in terms of accuracy (e.g., AIST shows a decrease of 4.1% on mean average error and 7.45% on mean square error for the Chicago 2019 crime dataset) and interpretability.1\",\"PeriodicalId\":43641,\"journal\":{\"name\":\"ACM Transactions on Spatial Algorithms and Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2020-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Spatial Algorithms and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3582274\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Spatial Algorithms and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3582274","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 7

摘要

准确性和可解释性是犯罪预测模型的两个基本属性。准确预测未来的犯罪事件以及预测背后的原因将使我们能够相应地计划预防犯罪的步骤。开发模型的关键挑战是捕捉特定犯罪类别的非线性和动态空间依赖关系和时间模式,同时保持模型的底层结构的可解释性。在本文中,我们开发了一个基于注意力的可解释时空网络,用于犯罪预测。AIST基于过去的犯罪事件、外部特征(如交通流量和兴趣点信息)和犯罪的重复趋势,为犯罪类别建立动态时空相关性模型。大量实验表明,AIST在准确性和可解释性方面优于最先进的技术(例如,AIST显示芝加哥2019年犯罪数据集的平均平均误差降低4.1%,均方误差降低7.45%)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AIST: An Interpretable Attention-Based Deep Learning Model for Crime Prediction
Accuracy and interpretability are two essential properties for a crime prediction model. Accurate prediction of future crime occurrences along with the reason behind a prediction would allow us to plan the crime prevention steps accordingly. The key challenge in developing the model is to capture the non-linear and dynamic spatial dependency and temporal patterns of a specific crime category, while keeping the underlying structure of the model interpretable. In this article, we develop AIST, an Attention-based Interpretable Spatio Temporal Network for crime prediction. AIST models the dynamic spatio-temporal correlations for a crime category based on past crime occurrences, external features (e.g., traffic flow and point of interest information) and recurring trends of crime. Extensive experiments show that AIST outperforms the state-of-the-art techniques in terms of accuracy (e.g., AIST shows a decrease of 4.1% on mean average error and 7.45% on mean square error for the Chicago 2019 crime dataset) and interpretability.1
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
5.30%
发文量
43
期刊介绍: ACM Transactions on Spatial Algorithms and Systems (TSAS) is a scholarly journal that publishes the highest quality papers on all aspects of spatial algorithms and systems and closely related disciplines. It has a multi-disciplinary perspective in that it spans a large number of areas where spatial data is manipulated or visualized (regardless of how it is specified - i.e., geometrically or textually) such as geography, geographic information systems (GIS), geospatial and spatiotemporal databases, spatial and metric indexing, location-based services, web-based spatial applications, geographic information retrieval (GIR), spatial reasoning and mining, security and privacy, as well as the related visual computing areas of computer graphics, computer vision, geometric modeling, and visualization where the spatial, geospatial, and spatiotemporal data is central.
期刊最新文献
Cross- and Context-Aware Attention Based Spatial-Temporal Graph Convolutional Networks for Human Mobility Prediction (Vision Paper) A Vision for Spatio-Causal Situation Awareness, Forecasting, and Planning Mobility Data Science: Perspectives and Challenges Graph Sampling for Map Comparison Latent Representation Learning for Geospatial Entities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1