{"title":"光纤布里渊动态光栅的研究进展及其应用","authors":"Hongying Zhang , Yongkang Dong","doi":"10.1016/j.pquantelec.2022.100440","DOIUrl":null,"url":null,"abstract":"<div><p>Brillouin dynamic gratings (BDGs) in optical fibers<span><span><span> have been developed for more than a decade and gained considerable interests in different photonics fields. Based on its features of flexibility and all-optical generation, BDG has been explored for many applications including distributed optical fiber sensing (temperature, strain, transverse pressure, hydrostatic pressure, and salinity), all-optical signal processing, all-optical delay, </span>microwave photonic<span> filter, and ultrahigh resolution optical spectrometry. Especially in recent years, besides the longitudinal BDG in the backward stimulated </span></span>Brillouin scattering (SBS), the transverse BDG associated with the forward SBS has been proposed for substance identification and characterization of optical fiber diameter. In this paper, a systematically theoretical analysis of BDG in optical fibers is given and its recent advances in applications is summarized.</span></p></div>","PeriodicalId":414,"journal":{"name":"Progress in Quantum Electronics","volume":"87 ","pages":"Article 100440"},"PeriodicalIF":7.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Advances in Brillouin dynamic grating in optical fibers and its applications\",\"authors\":\"Hongying Zhang , Yongkang Dong\",\"doi\":\"10.1016/j.pquantelec.2022.100440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Brillouin dynamic gratings (BDGs) in optical fibers<span><span><span> have been developed for more than a decade and gained considerable interests in different photonics fields. Based on its features of flexibility and all-optical generation, BDG has been explored for many applications including distributed optical fiber sensing (temperature, strain, transverse pressure, hydrostatic pressure, and salinity), all-optical signal processing, all-optical delay, </span>microwave photonic<span> filter, and ultrahigh resolution optical spectrometry. Especially in recent years, besides the longitudinal BDG in the backward stimulated </span></span>Brillouin scattering (SBS), the transverse BDG associated with the forward SBS has been proposed for substance identification and characterization of optical fiber diameter. In this paper, a systematically theoretical analysis of BDG in optical fibers is given and its recent advances in applications is summarized.</span></p></div>\",\"PeriodicalId\":414,\"journal\":{\"name\":\"Progress in Quantum Electronics\",\"volume\":\"87 \",\"pages\":\"Article 100440\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Quantum Electronics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0079672722000659\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Quantum Electronics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079672722000659","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Advances in Brillouin dynamic grating in optical fibers and its applications
Brillouin dynamic gratings (BDGs) in optical fibers have been developed for more than a decade and gained considerable interests in different photonics fields. Based on its features of flexibility and all-optical generation, BDG has been explored for many applications including distributed optical fiber sensing (temperature, strain, transverse pressure, hydrostatic pressure, and salinity), all-optical signal processing, all-optical delay, microwave photonic filter, and ultrahigh resolution optical spectrometry. Especially in recent years, besides the longitudinal BDG in the backward stimulated Brillouin scattering (SBS), the transverse BDG associated with the forward SBS has been proposed for substance identification and characterization of optical fiber diameter. In this paper, a systematically theoretical analysis of BDG in optical fibers is given and its recent advances in applications is summarized.
期刊介绍:
Progress in Quantum Electronics, established in 1969, is an esteemed international review journal dedicated to sharing cutting-edge topics in quantum electronics and its applications. The journal disseminates papers covering theoretical and experimental aspects of contemporary research, including advances in physics, technology, and engineering relevant to quantum electronics. It also encourages interdisciplinary research, welcoming papers that contribute new knowledge in areas such as bio and nano-related work.