光纤布里渊动态光栅的研究进展及其应用

IF 7.4 1区 物理与天体物理 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Progress in Quantum Electronics Pub Date : 2023-01-01 DOI:10.1016/j.pquantelec.2022.100440
Hongying Zhang , Yongkang Dong
{"title":"光纤布里渊动态光栅的研究进展及其应用","authors":"Hongying Zhang ,&nbsp;Yongkang Dong","doi":"10.1016/j.pquantelec.2022.100440","DOIUrl":null,"url":null,"abstract":"<div><p>Brillouin dynamic gratings (BDGs) in optical fibers<span><span><span> have been developed for more than a decade and gained considerable interests in different photonics fields. Based on its features of flexibility and all-optical generation, BDG has been explored for many applications including distributed optical fiber sensing (temperature, strain, transverse pressure, hydrostatic pressure, and salinity), all-optical signal processing, all-optical delay, </span>microwave photonic<span> filter, and ultrahigh resolution optical spectrometry. Especially in recent years, besides the longitudinal BDG in the backward stimulated </span></span>Brillouin scattering (SBS), the transverse BDG associated with the forward SBS has been proposed for substance identification and characterization of optical fiber diameter. In this paper, a systematically theoretical analysis of BDG in optical fibers is given and its recent advances in applications is summarized.</span></p></div>","PeriodicalId":414,"journal":{"name":"Progress in Quantum Electronics","volume":"87 ","pages":"Article 100440"},"PeriodicalIF":7.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Advances in Brillouin dynamic grating in optical fibers and its applications\",\"authors\":\"Hongying Zhang ,&nbsp;Yongkang Dong\",\"doi\":\"10.1016/j.pquantelec.2022.100440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Brillouin dynamic gratings (BDGs) in optical fibers<span><span><span> have been developed for more than a decade and gained considerable interests in different photonics fields. Based on its features of flexibility and all-optical generation, BDG has been explored for many applications including distributed optical fiber sensing (temperature, strain, transverse pressure, hydrostatic pressure, and salinity), all-optical signal processing, all-optical delay, </span>microwave photonic<span> filter, and ultrahigh resolution optical spectrometry. Especially in recent years, besides the longitudinal BDG in the backward stimulated </span></span>Brillouin scattering (SBS), the transverse BDG associated with the forward SBS has been proposed for substance identification and characterization of optical fiber diameter. In this paper, a systematically theoretical analysis of BDG in optical fibers is given and its recent advances in applications is summarized.</span></p></div>\",\"PeriodicalId\":414,\"journal\":{\"name\":\"Progress in Quantum Electronics\",\"volume\":\"87 \",\"pages\":\"Article 100440\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Quantum Electronics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0079672722000659\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Quantum Electronics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079672722000659","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1

摘要

光纤中的布里渊动态光栅(bdg)已经发展了十多年,在不同的光子学领域引起了广泛的关注。基于其灵活性和全光产生的特点,BDG被探索用于分布式光纤传感(温度、应变、横向压力、静水压力和盐度)、全光信号处理、全光延迟、微波光子滤波和超高分辨率光谱分析等许多应用。特别是近年来,除了反向受激布里渊散射(SBS)中的纵向受激布里渊散射外,还提出了与正向受激布里渊散射相关的横向受激布里渊散射用于光纤直径的物质识别和表征。本文系统地从理论上分析了BDG在光纤中的应用,并对其近年来的应用进展进行了综述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Advances in Brillouin dynamic grating in optical fibers and its applications

Brillouin dynamic gratings (BDGs) in optical fibers have been developed for more than a decade and gained considerable interests in different photonics fields. Based on its features of flexibility and all-optical generation, BDG has been explored for many applications including distributed optical fiber sensing (temperature, strain, transverse pressure, hydrostatic pressure, and salinity), all-optical signal processing, all-optical delay, microwave photonic filter, and ultrahigh resolution optical spectrometry. Especially in recent years, besides the longitudinal BDG in the backward stimulated Brillouin scattering (SBS), the transverse BDG associated with the forward SBS has been proposed for substance identification and characterization of optical fiber diameter. In this paper, a systematically theoretical analysis of BDG in optical fibers is given and its recent advances in applications is summarized.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Progress in Quantum Electronics
Progress in Quantum Electronics 工程技术-工程:电子与电气
CiteScore
18.50
自引率
0.00%
发文量
23
审稿时长
150 days
期刊介绍: Progress in Quantum Electronics, established in 1969, is an esteemed international review journal dedicated to sharing cutting-edge topics in quantum electronics and its applications. The journal disseminates papers covering theoretical and experimental aspects of contemporary research, including advances in physics, technology, and engineering relevant to quantum electronics. It also encourages interdisciplinary research, welcoming papers that contribute new knowledge in areas such as bio and nano-related work.
期刊最新文献
Elemental segregation and dimensional separation in halide perovskite light-emitting diodes III-nitride semiconductor membrane electronics and optoelectronics for heterogeneous integration Editorial Board Nonlinear photocurrent in quantum materials for broadband photodetection Technologies for modulation of visible light and their applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1