学习分析与高等音乐教育:观点与挑战

IF 0.3 0 HUMANITIES, MULTIDISCIPLINARY Artseduca Pub Date : 2022-12-07 DOI:10.6035/artseduca.6831
Margarita Lorenzo de Reizábal, Manuel Benito Gómez
{"title":"学习分析与高等音乐教育:观点与挑战","authors":"Margarita Lorenzo de Reizábal, Manuel Benito Gómez","doi":"10.6035/artseduca.6831","DOIUrl":null,"url":null,"abstract":"Continually monitoring student learning, improving tutoring, predicting academic risks such as performance drops or dropouts, assessing more objectively or understanding the behavior of student groups are some of the tasks that have been beyond the reach of music teachers. The current technology of massive data processing (Big Data) and its analysis (Learning Analytics-LA) allows to achieve these goals with relative ease. The possibility of extracting individual behavior patterns facilitates attention to diversity, reduces school dropout and failure, and opens the possibility of implementing new educational strategies. The phenomenon of data-based education has led to different types of studies. This paper reflects on three trends or fundamental perspectives in the use of the collection of massive information applied to learning and teaching. We offer an overview of research and applications of Learning Analytics specifically in the field of music education, as well as a reflection on its possible practical uses in higher music education in conservatories. For this purpose, we discuss some practical examples of how this technological methodology could be incorporated into music and music education research, and its influence on possible new educational paradigms that lead to innovation on teaching-learning process through new technological resources.","PeriodicalId":41592,"journal":{"name":"Artseduca","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Learning Analytics and Higher Music Education: Perspectives and Challenges\",\"authors\":\"Margarita Lorenzo de Reizábal, Manuel Benito Gómez\",\"doi\":\"10.6035/artseduca.6831\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Continually monitoring student learning, improving tutoring, predicting academic risks such as performance drops or dropouts, assessing more objectively or understanding the behavior of student groups are some of the tasks that have been beyond the reach of music teachers. The current technology of massive data processing (Big Data) and its analysis (Learning Analytics-LA) allows to achieve these goals with relative ease. The possibility of extracting individual behavior patterns facilitates attention to diversity, reduces school dropout and failure, and opens the possibility of implementing new educational strategies. The phenomenon of data-based education has led to different types of studies. This paper reflects on three trends or fundamental perspectives in the use of the collection of massive information applied to learning and teaching. We offer an overview of research and applications of Learning Analytics specifically in the field of music education, as well as a reflection on its possible practical uses in higher music education in conservatories. For this purpose, we discuss some practical examples of how this technological methodology could be incorporated into music and music education research, and its influence on possible new educational paradigms that lead to innovation on teaching-learning process through new technological resources.\",\"PeriodicalId\":41592,\"journal\":{\"name\":\"Artseduca\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artseduca\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6035/artseduca.6831\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"HUMANITIES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artseduca","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6035/artseduca.6831","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"HUMANITIES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

摘要

持续监控学生的学习,改进辅导,预测学业风险,如成绩下降或辍学,更客观地评估或理解学生群体的行为,这些都是音乐教师无法完成的任务。当前的大规模数据处理(大数据)及其分析(学习分析- la)技术可以相对轻松地实现这些目标。提取个人行为模式的可能性促进了对多样性的关注,减少了辍学和失败,并为实施新的教育策略提供了可能性。基于数据的教育现象导致了不同类型的学习。本文从三个方面反映了海量信息收集在学习和教学中的应用趋势或基本观点。我们概述了学习分析在音乐教育领域的研究和应用,并对其在音乐学院高等音乐教育中可能的实际应用进行了反思。为此,我们讨论了一些实际的例子,说明如何将这种技术方法纳入音乐和音乐教育研究,以及它对可能的新教育范式的影响,这些范式通过新的技术资源导致教学过程的创新。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Learning Analytics and Higher Music Education: Perspectives and Challenges
Continually monitoring student learning, improving tutoring, predicting academic risks such as performance drops or dropouts, assessing more objectively or understanding the behavior of student groups are some of the tasks that have been beyond the reach of music teachers. The current technology of massive data processing (Big Data) and its analysis (Learning Analytics-LA) allows to achieve these goals with relative ease. The possibility of extracting individual behavior patterns facilitates attention to diversity, reduces school dropout and failure, and opens the possibility of implementing new educational strategies. The phenomenon of data-based education has led to different types of studies. This paper reflects on three trends or fundamental perspectives in the use of the collection of massive information applied to learning and teaching. We offer an overview of research and applications of Learning Analytics specifically in the field of music education, as well as a reflection on its possible practical uses in higher music education in conservatories. For this purpose, we discuss some practical examples of how this technological methodology could be incorporated into music and music education research, and its influence on possible new educational paradigms that lead to innovation on teaching-learning process through new technological resources.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Artseduca
Artseduca HUMANITIES, MULTIDISCIPLINARY-
CiteScore
0.50
自引率
25.00%
发文量
37
期刊最新文献
Cómo hacer cosas con imágenes. Posibilidades educativas de las imágenes desde un enfoque performativo Expectativas de los padres y rendimiento en las enseñanzas musicales: Un acercamiento desde el Efecto Pigmalión Entrevista_Adam OcKelford_por Ana M. Vernia Arte contra la desigualdad: intervención socioeducativa a través de la fotografía en centros de educación primaria FORMACIÓN DEL PROFESORADO DE MÚSICA EN METODOLOGÍAS ACTIVAS Y SU APLICACIÓN EN EL AULA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1