电化学能量转换催化剂载体Ti0.9Ir0.1O2活性炭复合材料的合成与表征

IF 1.7 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Advances in Natural Sciences: Nanoscience and Nanotechnology Pub Date : 2023-07-13 DOI:10.1088/2043-6262/ace432
H. T. Pham, Hau Quoc Pham, Q. Huynh, Thao Ngoc Nguyen, N. Huynh, Thanh-Quang Nguyen, T. Huynh
{"title":"电化学能量转换催化剂载体Ti0.9Ir0.1O2活性炭复合材料的合成与表征","authors":"H. T. Pham, Hau Quoc Pham, Q. Huynh, Thao Ngoc Nguyen, N. Huynh, Thanh-Quang Nguyen, T. Huynh","doi":"10.1088/2043-6262/ace432","DOIUrl":null,"url":null,"abstract":"Constructing robust support plays a key role in governing the overall catalytic efficiency of metal-based catalysts for electrochemical reactions in sustainable energy-related conversion systems. We herein use a solvothermal method to assemble Ti0.9Ir0.1O2-Activated C composites, exhibiting high surface area and electrical conductivity compared to the pure TiO2 material. The material characterisations and electrochemical behaviours of the as-obtained composites are systemically studied by XRD, FE-SEM-EDX mapping, FT-IR, XPS, BET, four-point technique, cyclic voltammetry, etc Notably, the effect of composition on the physical and electrochemical properties of the as-made composites is also explored, which indicated the significant improvement in surface area and electrical conductivity with increasing carbon content, while a reverse trend is observed in the electrochemical durability. Among all studied composites, the Ti0.9Ir0.1O2-Activated C (50:50 wt%) composite can be a suitable support for metal-based catalysts due to its balance in physical properties (electrical conductivity of 1.5 S cm−1 and surface area of 152.12 m2 g−1) and electrochemical corrosion resistance (high durability after 2000-cycling ADT). This study can open up an efficient strategy to enhance the catalytic performance of electrochemical processes.","PeriodicalId":7359,"journal":{"name":"Advances in Natural Sciences: Nanoscience and Nanotechnology","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis and characterization of Ti0.9Ir0.1O2-activated carbon composite as a promising support for catalysts in electrochemical energy conversion\",\"authors\":\"H. T. Pham, Hau Quoc Pham, Q. Huynh, Thao Ngoc Nguyen, N. Huynh, Thanh-Quang Nguyen, T. Huynh\",\"doi\":\"10.1088/2043-6262/ace432\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Constructing robust support plays a key role in governing the overall catalytic efficiency of metal-based catalysts for electrochemical reactions in sustainable energy-related conversion systems. We herein use a solvothermal method to assemble Ti0.9Ir0.1O2-Activated C composites, exhibiting high surface area and electrical conductivity compared to the pure TiO2 material. The material characterisations and electrochemical behaviours of the as-obtained composites are systemically studied by XRD, FE-SEM-EDX mapping, FT-IR, XPS, BET, four-point technique, cyclic voltammetry, etc Notably, the effect of composition on the physical and electrochemical properties of the as-made composites is also explored, which indicated the significant improvement in surface area and electrical conductivity with increasing carbon content, while a reverse trend is observed in the electrochemical durability. Among all studied composites, the Ti0.9Ir0.1O2-Activated C (50:50 wt%) composite can be a suitable support for metal-based catalysts due to its balance in physical properties (electrical conductivity of 1.5 S cm−1 and surface area of 152.12 m2 g−1) and electrochemical corrosion resistance (high durability after 2000-cycling ADT). This study can open up an efficient strategy to enhance the catalytic performance of electrochemical processes.\",\"PeriodicalId\":7359,\"journal\":{\"name\":\"Advances in Natural Sciences: Nanoscience and Nanotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Natural Sciences: Nanoscience and Nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2043-6262/ace432\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Natural Sciences: Nanoscience and Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2043-6262/ace432","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在可持续能源相关转化系统中,构建坚固的支撑体在控制金属基催化剂对电化学反应的整体催化效率方面发挥着关键作用。本文中,我们使用溶剂热法组装Ti0.9Ir0.1O2-活化的C复合材料,与纯TiO2材料相比,其表现出高的表面积和电导率。通过XRD、FE-SEM-EDX图谱、FT-IR、XPS、BET、四点法、循环伏安法等对所制备的复合材料的材料表征和电化学行为进行了系统研究。值得注意的是,还探讨了组成对所制复合材料物理和电化学性能的影响,这表明随着碳含量的增加,表面积和电导率显著提高,而电化学耐久性呈相反趋势。在所有研究的复合材料中,Ti0.9Ir0.1O2-活化的C(50:50wt%)复合材料可以作为金属基催化剂的合适载体,因为它在物理性能(电导率为1.5S cm−1,表面积为152.12 m2 g−1)和电化学耐腐蚀性(2000循环ADT后的高耐久性)方面保持平衡。这项研究可以为提高电化学过程的催化性能开辟一种有效的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synthesis and characterization of Ti0.9Ir0.1O2-activated carbon composite as a promising support for catalysts in electrochemical energy conversion
Constructing robust support plays a key role in governing the overall catalytic efficiency of metal-based catalysts for electrochemical reactions in sustainable energy-related conversion systems. We herein use a solvothermal method to assemble Ti0.9Ir0.1O2-Activated C composites, exhibiting high surface area and electrical conductivity compared to the pure TiO2 material. The material characterisations and electrochemical behaviours of the as-obtained composites are systemically studied by XRD, FE-SEM-EDX mapping, FT-IR, XPS, BET, four-point technique, cyclic voltammetry, etc Notably, the effect of composition on the physical and electrochemical properties of the as-made composites is also explored, which indicated the significant improvement in surface area and electrical conductivity with increasing carbon content, while a reverse trend is observed in the electrochemical durability. Among all studied composites, the Ti0.9Ir0.1O2-Activated C (50:50 wt%) composite can be a suitable support for metal-based catalysts due to its balance in physical properties (electrical conductivity of 1.5 S cm−1 and surface area of 152.12 m2 g−1) and electrochemical corrosion resistance (high durability after 2000-cycling ADT). This study can open up an efficient strategy to enhance the catalytic performance of electrochemical processes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Natural Sciences: Nanoscience and Nanotechnology
Advances in Natural Sciences: Nanoscience and Nanotechnology NANOSCIENCE & NANOTECHNOLOGYMATERIALS SCIE-MATERIALS SCIENCE, MULTIDISCIPLINARY
自引率
4.80%
发文量
0
期刊最新文献
Recent advancements of nanoparticles for antiviral therapy Saponin-mediated and microwave-assisted biosynthesis of silver nanoparticles: preparations and anticancer assessment Synthesis, characterization, and cellular investigation of three smart polymeric nanoparticles as efficient plasmid CRISPR (pCRISPR) delivery vehicles Chitosan derived N-doped carbon aerogel nanostructures for high-performance supercapacitors Synergistic effect of cobalt ferrite-graphene oxide based hyperthermia and capsaicin to induce apoptosis and inhibit telomerase activity in breast cancer cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1