H. T. Pham, Hau Quoc Pham, Q. Huynh, Thao Ngoc Nguyen, N. Huynh, Thanh-Quang Nguyen, T. Huynh
{"title":"电化学能量转换催化剂载体Ti0.9Ir0.1O2活性炭复合材料的合成与表征","authors":"H. T. Pham, Hau Quoc Pham, Q. Huynh, Thao Ngoc Nguyen, N. Huynh, Thanh-Quang Nguyen, T. Huynh","doi":"10.1088/2043-6262/ace432","DOIUrl":null,"url":null,"abstract":"Constructing robust support plays a key role in governing the overall catalytic efficiency of metal-based catalysts for electrochemical reactions in sustainable energy-related conversion systems. We herein use a solvothermal method to assemble Ti0.9Ir0.1O2-Activated C composites, exhibiting high surface area and electrical conductivity compared to the pure TiO2 material. The material characterisations and electrochemical behaviours of the as-obtained composites are systemically studied by XRD, FE-SEM-EDX mapping, FT-IR, XPS, BET, four-point technique, cyclic voltammetry, etc Notably, the effect of composition on the physical and electrochemical properties of the as-made composites is also explored, which indicated the significant improvement in surface area and electrical conductivity with increasing carbon content, while a reverse trend is observed in the electrochemical durability. Among all studied composites, the Ti0.9Ir0.1O2-Activated C (50:50 wt%) composite can be a suitable support for metal-based catalysts due to its balance in physical properties (electrical conductivity of 1.5 S cm−1 and surface area of 152.12 m2 g−1) and electrochemical corrosion resistance (high durability after 2000-cycling ADT). This study can open up an efficient strategy to enhance the catalytic performance of electrochemical processes.","PeriodicalId":7359,"journal":{"name":"Advances in Natural Sciences: Nanoscience and Nanotechnology","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis and characterization of Ti0.9Ir0.1O2-activated carbon composite as a promising support for catalysts in electrochemical energy conversion\",\"authors\":\"H. T. Pham, Hau Quoc Pham, Q. Huynh, Thao Ngoc Nguyen, N. Huynh, Thanh-Quang Nguyen, T. Huynh\",\"doi\":\"10.1088/2043-6262/ace432\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Constructing robust support plays a key role in governing the overall catalytic efficiency of metal-based catalysts for electrochemical reactions in sustainable energy-related conversion systems. We herein use a solvothermal method to assemble Ti0.9Ir0.1O2-Activated C composites, exhibiting high surface area and electrical conductivity compared to the pure TiO2 material. The material characterisations and electrochemical behaviours of the as-obtained composites are systemically studied by XRD, FE-SEM-EDX mapping, FT-IR, XPS, BET, four-point technique, cyclic voltammetry, etc Notably, the effect of composition on the physical and electrochemical properties of the as-made composites is also explored, which indicated the significant improvement in surface area and electrical conductivity with increasing carbon content, while a reverse trend is observed in the electrochemical durability. Among all studied composites, the Ti0.9Ir0.1O2-Activated C (50:50 wt%) composite can be a suitable support for metal-based catalysts due to its balance in physical properties (electrical conductivity of 1.5 S cm−1 and surface area of 152.12 m2 g−1) and electrochemical corrosion resistance (high durability after 2000-cycling ADT). This study can open up an efficient strategy to enhance the catalytic performance of electrochemical processes.\",\"PeriodicalId\":7359,\"journal\":{\"name\":\"Advances in Natural Sciences: Nanoscience and Nanotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Natural Sciences: Nanoscience and Nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2043-6262/ace432\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Natural Sciences: Nanoscience and Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2043-6262/ace432","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Synthesis and characterization of Ti0.9Ir0.1O2-activated carbon composite as a promising support for catalysts in electrochemical energy conversion
Constructing robust support plays a key role in governing the overall catalytic efficiency of metal-based catalysts for electrochemical reactions in sustainable energy-related conversion systems. We herein use a solvothermal method to assemble Ti0.9Ir0.1O2-Activated C composites, exhibiting high surface area and electrical conductivity compared to the pure TiO2 material. The material characterisations and electrochemical behaviours of the as-obtained composites are systemically studied by XRD, FE-SEM-EDX mapping, FT-IR, XPS, BET, four-point technique, cyclic voltammetry, etc Notably, the effect of composition on the physical and electrochemical properties of the as-made composites is also explored, which indicated the significant improvement in surface area and electrical conductivity with increasing carbon content, while a reverse trend is observed in the electrochemical durability. Among all studied composites, the Ti0.9Ir0.1O2-Activated C (50:50 wt%) composite can be a suitable support for metal-based catalysts due to its balance in physical properties (electrical conductivity of 1.5 S cm−1 and surface area of 152.12 m2 g−1) and electrochemical corrosion resistance (high durability after 2000-cycling ADT). This study can open up an efficient strategy to enhance the catalytic performance of electrochemical processes.