声音影响神经母细胞瘤细胞的成熟和受损组织的修复

IF 2.3 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Electronic Journal of Biotechnology Pub Date : 2022-05-01 DOI:10.1016/j.ejbt.2022.03.001
Hyunjin Cho , Hee-Jung Park , Ju-Hye Choi , Myeong-Hyun Nam , Jong-Seob Jeong , Young-Kwon Seo
{"title":"声音影响神经母细胞瘤细胞的成熟和受损组织的修复","authors":"Hyunjin Cho ,&nbsp;Hee-Jung Park ,&nbsp;Ju-Hye Choi ,&nbsp;Myeong-Hyun Nam ,&nbsp;Jong-Seob Jeong ,&nbsp;Young-Kwon Seo","doi":"10.1016/j.ejbt.2022.03.001","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Sound is a kind of mechanical stimulus and has various effects on the growth and metabolism of plants and animal cells. In previous studies, it was confirmed that sound stimulation promotes the neurodifferentiation process of mesenchymal stem cells. In this study, we examined the effect of sound on the maturation of neuroblastoma cells, SH-SY5Y cells, and investigated its effect on an ischemic mouse stroke model. In the <em>in vitro</em> study, SH-SY5Y cells were exposed to the sound for 3 days and then performed rt-PCR, FACS, and western blot for analysis. In the <em>in vivo</em> study, mesenchymal stem cells were injected into the injured area, and then rats were exposed to sound for 4 weeks. Then, immunohistochemical staining and western blotting were performed.</p></div><div><h3>Results</h3><p>Sound upregulated the expression of presynaptic proteins synaptophysin and postsynaptic density protein 95, as well as neuronal-related proteins such as NFL, Tau, and MAP2. T-type calcium channels such as <em>CACNA1G</em> and <em>CACNA1I</em> were also induced by sound. In an experiment using the brain of ischemic mice, the expression of proteins involved in neuronal differentiation such as MAP2, NF200, and S100 was increased, while the inflammation-related proteins IFNγ, MMP9, and TNFα were decreased. In this neuronal differentiation process, both ERK and CREB, which are proteins involved in the initial signal transduction process, were activated.</p></div><div><h3>Conclusions</h3><p>Our study demonstrates that sound, with the advantage of being non-invasive and easy to use, is an effective stimulus that induces neural differentiation and maturation on animal cells.</p><p><strong>How to cite:</strong> Cho H, Park H-J, Choi J-H, et al. Sound affects the neuronal maturation of neuroblastoma cells and the repair of damaged tissues. Electron J Biotechnol 2022;57. https://doi.org/10.1016/j.ejbt.2022.03.001</p></div>","PeriodicalId":11529,"journal":{"name":"Electronic Journal of Biotechnology","volume":"57 ","pages":"Pages 1-11"},"PeriodicalIF":2.3000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0717345822000070/pdfft?md5=751788385f419af044208ef06f2ecd02&pid=1-s2.0-S0717345822000070-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Sound affects the neuronal maturation of neuroblastoma cells and the repair of damaged tissues\",\"authors\":\"Hyunjin Cho ,&nbsp;Hee-Jung Park ,&nbsp;Ju-Hye Choi ,&nbsp;Myeong-Hyun Nam ,&nbsp;Jong-Seob Jeong ,&nbsp;Young-Kwon Seo\",\"doi\":\"10.1016/j.ejbt.2022.03.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Sound is a kind of mechanical stimulus and has various effects on the growth and metabolism of plants and animal cells. In previous studies, it was confirmed that sound stimulation promotes the neurodifferentiation process of mesenchymal stem cells. In this study, we examined the effect of sound on the maturation of neuroblastoma cells, SH-SY5Y cells, and investigated its effect on an ischemic mouse stroke model. In the <em>in vitro</em> study, SH-SY5Y cells were exposed to the sound for 3 days and then performed rt-PCR, FACS, and western blot for analysis. In the <em>in vivo</em> study, mesenchymal stem cells were injected into the injured area, and then rats were exposed to sound for 4 weeks. Then, immunohistochemical staining and western blotting were performed.</p></div><div><h3>Results</h3><p>Sound upregulated the expression of presynaptic proteins synaptophysin and postsynaptic density protein 95, as well as neuronal-related proteins such as NFL, Tau, and MAP2. T-type calcium channels such as <em>CACNA1G</em> and <em>CACNA1I</em> were also induced by sound. In an experiment using the brain of ischemic mice, the expression of proteins involved in neuronal differentiation such as MAP2, NF200, and S100 was increased, while the inflammation-related proteins IFNγ, MMP9, and TNFα were decreased. In this neuronal differentiation process, both ERK and CREB, which are proteins involved in the initial signal transduction process, were activated.</p></div><div><h3>Conclusions</h3><p>Our study demonstrates that sound, with the advantage of being non-invasive and easy to use, is an effective stimulus that induces neural differentiation and maturation on animal cells.</p><p><strong>How to cite:</strong> Cho H, Park H-J, Choi J-H, et al. Sound affects the neuronal maturation of neuroblastoma cells and the repair of damaged tissues. Electron J Biotechnol 2022;57. https://doi.org/10.1016/j.ejbt.2022.03.001</p></div>\",\"PeriodicalId\":11529,\"journal\":{\"name\":\"Electronic Journal of Biotechnology\",\"volume\":\"57 \",\"pages\":\"Pages 1-11\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0717345822000070/pdfft?md5=751788385f419af044208ef06f2ecd02&pid=1-s2.0-S0717345822000070-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0717345822000070\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0717345822000070","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

声音是一种机械刺激,对植物和动物细胞的生长和代谢有各种影响。先前的研究证实,声音刺激促进了间充质干细胞的神经分化过程。在这项研究中,我们研究了声音对神经母细胞瘤细胞SH-SY5Y细胞成熟的影响,并研究了它对缺血性小鼠中风模型的影响。在体外研究中,SH-SY5Y细胞暴露于声音中3天,然后进行rt-PCR, FACS和western blot分析。在体内研究中,将间充质干细胞注射到损伤区域,然后将大鼠暴露在声音中4周。然后进行免疫组化染色和western blotting。结果声音上调突触前蛋白synaptophysin、突触后密度蛋白95及神经元相关蛋白如NFL、Tau、MAP2的表达。t型钙通道如CACNA1G和CACNA1I也被声音诱导。在缺血小鼠的大脑实验中,参与神经元分化的蛋白如MAP2、NF200和S100的表达增加,而炎症相关蛋白IFNγ、MMP9和TNFα的表达减少。在这一神经元分化过程中,参与初始信号转导过程的蛋白ERK和CREB均被激活。结论我们的研究表明,声音是一种诱导动物细胞神经分化和成熟的有效刺激,具有非侵入性和易于使用的优点。如何引用:Cho H, Park H- j, Choi J-H,等。声音影响神经母细胞瘤细胞的成熟和受损组织的修复。中国生物医学工程学报(英文版);2009;16。https://doi.org/10.1016/j.ejbt.2022.03.001
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sound affects the neuronal maturation of neuroblastoma cells and the repair of damaged tissues

Background

Sound is a kind of mechanical stimulus and has various effects on the growth and metabolism of plants and animal cells. In previous studies, it was confirmed that sound stimulation promotes the neurodifferentiation process of mesenchymal stem cells. In this study, we examined the effect of sound on the maturation of neuroblastoma cells, SH-SY5Y cells, and investigated its effect on an ischemic mouse stroke model. In the in vitro study, SH-SY5Y cells were exposed to the sound for 3 days and then performed rt-PCR, FACS, and western blot for analysis. In the in vivo study, mesenchymal stem cells were injected into the injured area, and then rats were exposed to sound for 4 weeks. Then, immunohistochemical staining and western blotting were performed.

Results

Sound upregulated the expression of presynaptic proteins synaptophysin and postsynaptic density protein 95, as well as neuronal-related proteins such as NFL, Tau, and MAP2. T-type calcium channels such as CACNA1G and CACNA1I were also induced by sound. In an experiment using the brain of ischemic mice, the expression of proteins involved in neuronal differentiation such as MAP2, NF200, and S100 was increased, while the inflammation-related proteins IFNγ, MMP9, and TNFα were decreased. In this neuronal differentiation process, both ERK and CREB, which are proteins involved in the initial signal transduction process, were activated.

Conclusions

Our study demonstrates that sound, with the advantage of being non-invasive and easy to use, is an effective stimulus that induces neural differentiation and maturation on animal cells.

How to cite: Cho H, Park H-J, Choi J-H, et al. Sound affects the neuronal maturation of neuroblastoma cells and the repair of damaged tissues. Electron J Biotechnol 2022;57. https://doi.org/10.1016/j.ejbt.2022.03.001

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronic Journal of Biotechnology
Electronic Journal of Biotechnology 工程技术-生物工程与应用微生物
CiteScore
5.60
自引率
0.00%
发文量
50
审稿时长
2 months
期刊介绍: Electronic Journal of Biotechnology is an international scientific electronic journal, which publishes papers from all areas related to Biotechnology. It covers from molecular biology and the chemistry of biological processes to aquatic and earth environmental aspects, computational applications, policy and ethical issues directly related to Biotechnology. The journal provides an effective way to publish research and review articles and short communications, video material, animation sequences and 3D are also accepted to support and enhance articles. The articles will be examined by a scientific committee and anonymous evaluators and published every two months in HTML and PDF formats (January 15th , March 15th, May 15th, July 15th, September 15th, November 15th). The following areas are covered in the Journal: • Animal Biotechnology • Biofilms • Bioinformatics • Biomedicine • Biopolicies of International Cooperation • Biosafety • Biotechnology Industry • Biotechnology of Human Disorders • Chemical Engineering • Environmental Biotechnology • Food Biotechnology • Marine Biotechnology • Microbial Biotechnology • Molecular Biology and Genetics •Nanobiotechnology • Omics • Plant Biotechnology • Process Biotechnology • Process Chemistry and Technology • Tissue Engineering
期刊最新文献
Development of a chemically defined medium for Yarrowia yeasts using a strategy of biological mimicry Evaluation of high-value bioproducts production by marine endophytic fungus Arthrinium sp. FAKSA 10 under solid state fermentation using agro-industrial wastes Antibiotic evaluation of the nanocomposites IONs-MWCNTs-Pc and IONs-GO-Pc encapsulated in the biocompatible hydrogel poly(VCL-co-PEGDA) based on photodynamic effect The significance of chemical transfection/transduction enhancers in promoting the viral vectors-assisted gene delivery approaches: A focus on potentials for inherited retinal diseases Enhancing Lactobacillus plantarum viability using novel chitosan-alginate-pectin microcapsules: Effects on gastrointestinal survival, weight management, and metabolic health
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1