基于统计和神经机器翻译的译者对文学后期编辑的感知

IF 1 0 LANGUAGE & LINGUISTICS Translation Spaces Pub Date : 2018-11-28 DOI:10.1075/TS.18014.MOO
Joss Moorkens, Antonio Toral, Sheila Castilho, Andy Way
{"title":"基于统计和神经机器翻译的译者对文学后期编辑的感知","authors":"Joss Moorkens, Antonio Toral, Sheila Castilho, Andy Way","doi":"10.1075/TS.18014.MOO","DOIUrl":null,"url":null,"abstract":"\n In the context of recent improvements in the quality of machine translation (MT) output and new use cases being found for that\n output, this article reports on an experiment using statistical and neural MT systems to translate literature. Six professional\n translators with experience of literary translation produced English-to-Catalan translations under three conditions: translation\n from scratch, neural MT post-editing, and statistical MT post-editing. They provided feedback before and after the translation via\n questionnaires and interviews. While all participants prefer to translate from scratch, mostly due to the freedom to be creative\n without the constraints of segment-level segmentation, those with less experience find the MT suggestions useful.","PeriodicalId":43764,"journal":{"name":"Translation Spaces","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2018-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":"{\"title\":\"Translators’ perceptions of literary post-editing using statistical and neural machine translation\",\"authors\":\"Joss Moorkens, Antonio Toral, Sheila Castilho, Andy Way\",\"doi\":\"10.1075/TS.18014.MOO\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In the context of recent improvements in the quality of machine translation (MT) output and new use cases being found for that\\n output, this article reports on an experiment using statistical and neural MT systems to translate literature. Six professional\\n translators with experience of literary translation produced English-to-Catalan translations under three conditions: translation\\n from scratch, neural MT post-editing, and statistical MT post-editing. They provided feedback before and after the translation via\\n questionnaires and interviews. While all participants prefer to translate from scratch, mostly due to the freedom to be creative\\n without the constraints of segment-level segmentation, those with less experience find the MT suggestions useful.\",\"PeriodicalId\":43764,\"journal\":{\"name\":\"Translation Spaces\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2018-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"46\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Translation Spaces\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1075/TS.18014.MOO\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"LANGUAGE & LINGUISTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translation Spaces","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1075/TS.18014.MOO","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"LANGUAGE & LINGUISTICS","Score":null,"Total":0}
引用次数: 46

摘要

在机器翻译(MT)输出质量最近有所提高的背景下,以及在该输出中发现了新的用例,本文报道了一项使用统计和神经机器翻译系统翻译文献的实验。六位具有文学翻译经验的专业翻译人员在三种条件下完成了英语到加泰罗尼亚语的翻译:从头开始翻译、神经MT后期编辑和统计MT后期编辑。他们在翻译前后通过问卷调查和访谈提供反馈。虽然所有参与者都喜欢从头开始翻译,主要是因为在没有细分限制的情况下可以自由发挥创意,但经验较少的参与者发现MT建议很有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Translators’ perceptions of literary post-editing using statistical and neural machine translation
In the context of recent improvements in the quality of machine translation (MT) output and new use cases being found for that output, this article reports on an experiment using statistical and neural MT systems to translate literature. Six professional translators with experience of literary translation produced English-to-Catalan translations under three conditions: translation from scratch, neural MT post-editing, and statistical MT post-editing. They provided feedback before and after the translation via questionnaires and interviews. While all participants prefer to translate from scratch, mostly due to the freedom to be creative without the constraints of segment-level segmentation, those with less experience find the MT suggestions useful.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Translation Spaces
Translation Spaces LANGUAGE & LINGUISTICS-
CiteScore
4.90
自引率
12.50%
发文量
19
期刊介绍: Translation Spaces is a biannual, peer-reviewed, indexed journal that recognizes the global impact of translation. It envisions translation as multi-dimensional phenomena productively studied (from) within complex spaces of encounter between knowledge, values, beliefs, and practices. These translation spaces -virtual and physical- are multidisciplinary, multimedia, and multilingual. They are the frontiers being explored by scholars investigating where and how translation practice and theory interact most dramatically with the evolving landscape of contemporary globalization.
期刊最新文献
Is machine interpreting interpreting? What do we know about translators’ job satisfaction? Healthcare interpreters X, Y, Z Exploring ethical dilemmas encountered by public service interpreters and their effect on job satisfaction Revising a literary translation for publication
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1