{"title":"轨道角动量增强的光-物质相互作用:微观和纳米尺度的物质控制","authors":"A. Porfirev , S. Khonina , A. Kuchmizhak","doi":"10.1016/j.pquantelec.2023.100459","DOIUrl":null,"url":null,"abstract":"<div><p><span>Orbital angular momentum<span> (OAM) of light is an important feature of structured electromagnetic fields<span><span><span> exhibiting non-uniform spatial distribution. In contrast to a spin angular momentum (SAM) reflecting angular rotation of a polarization vector, OAM is the quantity that expresses the amount of dynamical rotation of a wavefront about an optical axis. In 1992 it was demonstrated that such rotation can be transferred to the microscale objects, initiating a novel research direction related to the OAM–light–matter interaction and opening the pathways for new technologies widely applied in physics, chemistry and biology. This review surveys recent progress in the field of interaction between singular optical radiation and matter covering such rapidly evolving application areas as </span>laser material processing<span><span><span>, optical tweezers, control of </span>chirality of matter, and OAM-empowered linear and </span>nonlinear effects — </span></span>Raman scattering as well as Doppler, Faraday and </span></span></span>Hall effects<span>. OAM transfer at the atomic scale is also highlighted revealing the remarkable opportunities to modify the physics of ultrahigh-intense laser–plasma interaction. Finally, the so-called spatiotemporal optical vortices, optical vortices with phase and energy circulation in a spatiotemporal plane with a controllable purely transverse OAM, were discussed in terms of their great potential for new applications that would otherwise be impossible.</span></p></div>","PeriodicalId":414,"journal":{"name":"Progress in Quantum Electronics","volume":"88 ","pages":"Article 100459"},"PeriodicalIF":7.4000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Light–matter interaction empowered by orbital angular momentum: Control of matter at the micro- and nanoscale\",\"authors\":\"A. Porfirev , S. Khonina , A. Kuchmizhak\",\"doi\":\"10.1016/j.pquantelec.2023.100459\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Orbital angular momentum<span> (OAM) of light is an important feature of structured electromagnetic fields<span><span><span> exhibiting non-uniform spatial distribution. In contrast to a spin angular momentum (SAM) reflecting angular rotation of a polarization vector, OAM is the quantity that expresses the amount of dynamical rotation of a wavefront about an optical axis. In 1992 it was demonstrated that such rotation can be transferred to the microscale objects, initiating a novel research direction related to the OAM–light–matter interaction and opening the pathways for new technologies widely applied in physics, chemistry and biology. This review surveys recent progress in the field of interaction between singular optical radiation and matter covering such rapidly evolving application areas as </span>laser material processing<span><span><span>, optical tweezers, control of </span>chirality of matter, and OAM-empowered linear and </span>nonlinear effects — </span></span>Raman scattering as well as Doppler, Faraday and </span></span></span>Hall effects<span>. OAM transfer at the atomic scale is also highlighted revealing the remarkable opportunities to modify the physics of ultrahigh-intense laser–plasma interaction. Finally, the so-called spatiotemporal optical vortices, optical vortices with phase and energy circulation in a spatiotemporal plane with a controllable purely transverse OAM, were discussed in terms of their great potential for new applications that would otherwise be impossible.</span></p></div>\",\"PeriodicalId\":414,\"journal\":{\"name\":\"Progress in Quantum Electronics\",\"volume\":\"88 \",\"pages\":\"Article 100459\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Quantum Electronics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0079672723000083\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Quantum Electronics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079672723000083","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Light–matter interaction empowered by orbital angular momentum: Control of matter at the micro- and nanoscale
Orbital angular momentum (OAM) of light is an important feature of structured electromagnetic fields exhibiting non-uniform spatial distribution. In contrast to a spin angular momentum (SAM) reflecting angular rotation of a polarization vector, OAM is the quantity that expresses the amount of dynamical rotation of a wavefront about an optical axis. In 1992 it was demonstrated that such rotation can be transferred to the microscale objects, initiating a novel research direction related to the OAM–light–matter interaction and opening the pathways for new technologies widely applied in physics, chemistry and biology. This review surveys recent progress in the field of interaction between singular optical radiation and matter covering such rapidly evolving application areas as laser material processing, optical tweezers, control of chirality of matter, and OAM-empowered linear and nonlinear effects — Raman scattering as well as Doppler, Faraday and Hall effects. OAM transfer at the atomic scale is also highlighted revealing the remarkable opportunities to modify the physics of ultrahigh-intense laser–plasma interaction. Finally, the so-called spatiotemporal optical vortices, optical vortices with phase and energy circulation in a spatiotemporal plane with a controllable purely transverse OAM, were discussed in terms of their great potential for new applications that would otherwise be impossible.
期刊介绍:
Progress in Quantum Electronics, established in 1969, is an esteemed international review journal dedicated to sharing cutting-edge topics in quantum electronics and its applications. The journal disseminates papers covering theoretical and experimental aspects of contemporary research, including advances in physics, technology, and engineering relevant to quantum electronics. It also encourages interdisciplinary research, welcoming papers that contribute new knowledge in areas such as bio and nano-related work.