全球WRF模式预测热带气旋路径的数值试验

IF 2.4 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Tropical Cyclone Research and Review Pub Date : 2022-12-01 DOI:10.1016/j.tcrr.2023.02.001
Jingmei Yu
{"title":"全球WRF模式预测热带气旋路径的数值试验","authors":"Jingmei Yu","doi":"10.1016/j.tcrr.2023.02.001","DOIUrl":null,"url":null,"abstract":"<div><p>This work use the global WRF model containing quadruply nesting with which the highest resolution reached 10 km to simulate the typhoons landed on the coast of China in 2011. The model is driven by the reanalysis data fnl with the resolution of 1° x 1°. The study assess the feasibility and applicability of the global WRF model in the 1–7 days prediction of Tropical Cyclone (TC) track by comparing it with the regional WRF model containing the same setting (physical scheme, dynamical frame, model resolution and nesting grid domain). The global model obtain a similar forecast accuracy to the regional model in 1–7 days, with a difference less than 50 km. The forecast accuracy of the global model for 1, 2, 3, 4, 5, 6 and 7 days is about 70 km, 120 km, 180 km, 240 km, 320 km, 400 km, and 500 km, respectively. The reason of the significant TC track errors in the forecast more than 3 or 4 days is analyzed, it is due to the poor representation of typhoon and its steering flow under the situation of binary typhoon system. The study show that the global WRF model can be exploited to proceed the high resolution TC simulation and make the TC track forecast up to 7 days but not in the case of multiple typhoon.</p></div>","PeriodicalId":44442,"journal":{"name":"Tropical Cyclone Research and Review","volume":"11 4","pages":"Pages 252-264"},"PeriodicalIF":2.4000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2225603223000012/pdfft?md5=3be4b844748ce66004ec854a11da2959&pid=1-s2.0-S2225603223000012-main.pdf","citationCount":"1","resultStr":"{\"title\":\"Numerical tests for tropical cyclone track prediction by the global WRF model\",\"authors\":\"Jingmei Yu\",\"doi\":\"10.1016/j.tcrr.2023.02.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This work use the global WRF model containing quadruply nesting with which the highest resolution reached 10 km to simulate the typhoons landed on the coast of China in 2011. The model is driven by the reanalysis data fnl with the resolution of 1° x 1°. The study assess the feasibility and applicability of the global WRF model in the 1–7 days prediction of Tropical Cyclone (TC) track by comparing it with the regional WRF model containing the same setting (physical scheme, dynamical frame, model resolution and nesting grid domain). The global model obtain a similar forecast accuracy to the regional model in 1–7 days, with a difference less than 50 km. The forecast accuracy of the global model for 1, 2, 3, 4, 5, 6 and 7 days is about 70 km, 120 km, 180 km, 240 km, 320 km, 400 km, and 500 km, respectively. The reason of the significant TC track errors in the forecast more than 3 or 4 days is analyzed, it is due to the poor representation of typhoon and its steering flow under the situation of binary typhoon system. The study show that the global WRF model can be exploited to proceed the high resolution TC simulation and make the TC track forecast up to 7 days but not in the case of multiple typhoon.</p></div>\",\"PeriodicalId\":44442,\"journal\":{\"name\":\"Tropical Cyclone Research and Review\",\"volume\":\"11 4\",\"pages\":\"Pages 252-264\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2225603223000012/pdfft?md5=3be4b844748ce66004ec854a11da2959&pid=1-s2.0-S2225603223000012-main.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tropical Cyclone Research and Review\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2225603223000012\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tropical Cyclone Research and Review","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2225603223000012","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 1

摘要

本文采用最高分辨率达10公里的四层嵌套全球WRF模型模拟2011年登陆中国沿海的台风。该模型由分辨率为1°x 1°的再分析数据驱动。通过将全球WRF模式与具有相同设置(物理方案、动力框架、模式分辨率和嵌套网格域)的区域WRF模式进行比较,评估WRF模式在1-7天热带气旋路径预报中的可行性和适用性。全球模式与区域模式在1 ~ 7天的预报精度相近,差值小于50 km。全球模式1、2、3、4、5、6和7天的预报精度分别约为70 km、120 km、180 km、240 km、320 km、400 km和500 km。分析了在3天或4天以上的预报中TC轨迹误差较大的原因,认为是二元台风系统下台风及其转向流的表征较差所致。研究表明,全球WRF模式可以进行高分辨率的TC模拟,并能进行7天以内的TC路径预报,但不能用于多台风的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Numerical tests for tropical cyclone track prediction by the global WRF model

This work use the global WRF model containing quadruply nesting with which the highest resolution reached 10 km to simulate the typhoons landed on the coast of China in 2011. The model is driven by the reanalysis data fnl with the resolution of 1° x 1°. The study assess the feasibility and applicability of the global WRF model in the 1–7 days prediction of Tropical Cyclone (TC) track by comparing it with the regional WRF model containing the same setting (physical scheme, dynamical frame, model resolution and nesting grid domain). The global model obtain a similar forecast accuracy to the regional model in 1–7 days, with a difference less than 50 km. The forecast accuracy of the global model for 1, 2, 3, 4, 5, 6 and 7 days is about 70 km, 120 km, 180 km, 240 km, 320 km, 400 km, and 500 km, respectively. The reason of the significant TC track errors in the forecast more than 3 or 4 days is analyzed, it is due to the poor representation of typhoon and its steering flow under the situation of binary typhoon system. The study show that the global WRF model can be exploited to proceed the high resolution TC simulation and make the TC track forecast up to 7 days but not in the case of multiple typhoon.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tropical Cyclone Research and Review
Tropical Cyclone Research and Review METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
4.60
自引率
3.40%
发文量
184
审稿时长
30 weeks
期刊介绍: Tropical Cyclone Research and Review is an international journal focusing on tropical cyclone monitoring, forecasting, and research as well as associated hydrological effects and disaster risk reduction. This journal is edited and published by the ESCAP/WMO Typhoon Committee (TC) and the Shanghai Typhoon Institute of the China Meteorology Administration (STI/CMA). Contributions from all tropical cyclone basins are welcome. Scope of the journal includes: • Reviews of tropical cyclones exhibiting unusual characteristics or behavior or resulting in disastrous impacts on Typhoon Committee Members and other regional WMO bodies • Advances in applied and basic tropical cyclone research or technology to improve tropical cyclone forecasts and warnings • Basic theoretical studies of tropical cyclones • Event reports, compelling images, and topic review reports of tropical cyclones • Impacts, risk assessments, and risk management techniques related to tropical cyclones
期刊最新文献
Discussion on the enhancement of Typhoon Committee activities for UN EW4All initiative Analyzing coherent structures in the tropical cyclone boundary layer using large eddy simulations Analysis of characteristics and evaluation of forecast accuracy for Super Typhoon Doksuri (2023) Case study of high waves in the South Pacific generated by Tropical Cyclone Harold in 2020 A theoretical method to characterize the resistance effects of nonflat terrain on wind fields in a parametric wind field model for tropical cyclones
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1