{"title":"分数阶离散方程系统的有界解","authors":"J. Diblík","doi":"10.1515/anona-2022-0260","DOIUrl":null,"url":null,"abstract":"Abstract The article is concerned with systems of fractional discrete equations Δ α x ( n + 1 ) = F n ( n , x ( n ) , x ( n − 1 ) , … , x ( n 0 ) ) , n = n 0 , n 0 + 1 , … , {\\Delta }^{\\alpha }x\\left(n+1)={F}_{n}\\left(n,x\\left(n),x\\left(n-1),\\ldots ,x\\left({n}_{0})),\\hspace{1em}n={n}_{0},{n}_{0}+1,\\ldots , where n 0 ∈ Z {n}_{0}\\in {\\mathbb{Z}} , n n is an independent variable, Δ α {\\Delta }^{\\alpha } is an α \\alpha -order fractional difference, α ∈ R \\alpha \\in {\\mathbb{R}} , F n : { n } × R n − n 0 + 1 → R s {F}_{n}:\\left\\{n\\right\\}\\times {{\\mathbb{R}}}^{n-{n}_{0}+1}\\to {{\\mathbb{R}}}^{s} , s ⩾ 1 s\\geqslant 1 is a fixed integer, and x : { n 0 , n 0 + 1 , … } → R s x:\\left\\{{n}_{0},{n}_{0}+1,\\ldots \\right\\}\\to {{\\mathbb{R}}}^{s} is a dependent (unknown) variable. A retract principle is used to prove the existence of solutions with graphs remaining in a given domain for every n ⩾ n 0 n\\geqslant {n}_{0} , which then serves as a basis for further proving the existence of bounded solutions to a linear nonhomogeneous system of discrete equations Δ α x ( n + 1 ) = A ( n ) x ( n ) + δ ( n ) , n = n 0 , n 0 + 1 , … , {\\Delta }^{\\alpha }x\\left(n+1)=A\\left(n)x\\left(n)+\\delta \\left(n),\\hspace{1em}n={n}_{0},{n}_{0}+1,\\ldots , where A ( n ) A\\left(n) is a square matrix and δ ( n ) \\delta \\left(n) is a vector function. Illustrative examples accompany the statements derived, possible generalizations are discussed, and open problems for future research are formulated as well.","PeriodicalId":51301,"journal":{"name":"Advances in Nonlinear Analysis","volume":"11 1","pages":"1614 - 1630"},"PeriodicalIF":3.2000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Bounded solutions to systems of fractional discrete equations\",\"authors\":\"J. Diblík\",\"doi\":\"10.1515/anona-2022-0260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The article is concerned with systems of fractional discrete equations Δ α x ( n + 1 ) = F n ( n , x ( n ) , x ( n − 1 ) , … , x ( n 0 ) ) , n = n 0 , n 0 + 1 , … , {\\\\Delta }^{\\\\alpha }x\\\\left(n+1)={F}_{n}\\\\left(n,x\\\\left(n),x\\\\left(n-1),\\\\ldots ,x\\\\left({n}_{0})),\\\\hspace{1em}n={n}_{0},{n}_{0}+1,\\\\ldots , where n 0 ∈ Z {n}_{0}\\\\in {\\\\mathbb{Z}} , n n is an independent variable, Δ α {\\\\Delta }^{\\\\alpha } is an α \\\\alpha -order fractional difference, α ∈ R \\\\alpha \\\\in {\\\\mathbb{R}} , F n : { n } × R n − n 0 + 1 → R s {F}_{n}:\\\\left\\\\{n\\\\right\\\\}\\\\times {{\\\\mathbb{R}}}^{n-{n}_{0}+1}\\\\to {{\\\\mathbb{R}}}^{s} , s ⩾ 1 s\\\\geqslant 1 is a fixed integer, and x : { n 0 , n 0 + 1 , … } → R s x:\\\\left\\\\{{n}_{0},{n}_{0}+1,\\\\ldots \\\\right\\\\}\\\\to {{\\\\mathbb{R}}}^{s} is a dependent (unknown) variable. A retract principle is used to prove the existence of solutions with graphs remaining in a given domain for every n ⩾ n 0 n\\\\geqslant {n}_{0} , which then serves as a basis for further proving the existence of bounded solutions to a linear nonhomogeneous system of discrete equations Δ α x ( n + 1 ) = A ( n ) x ( n ) + δ ( n ) , n = n 0 , n 0 + 1 , … , {\\\\Delta }^{\\\\alpha }x\\\\left(n+1)=A\\\\left(n)x\\\\left(n)+\\\\delta \\\\left(n),\\\\hspace{1em}n={n}_{0},{n}_{0}+1,\\\\ldots , where A ( n ) A\\\\left(n) is a square matrix and δ ( n ) \\\\delta \\\\left(n) is a vector function. Illustrative examples accompany the statements derived, possible generalizations are discussed, and open problems for future research are formulated as well.\",\"PeriodicalId\":51301,\"journal\":{\"name\":\"Advances in Nonlinear Analysis\",\"volume\":\"11 1\",\"pages\":\"1614 - 1630\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Nonlinear Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/anona-2022-0260\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Nonlinear Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2022-0260","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6
摘要
摘要本文讨论分数阶离散方程组Δαx(n+1)=Fn(n,x(n),x(n-1),…,x(n0)),n=n0,n0+1,…,{\Delta}={F}_{n} \left(n,x\left(n),x\lift(n-1),\ldots,x\lef({n}_{0})),\ hspace{1em}n={n}_{0},{n}_{0}+1,\ldots,其中n 0∈Z{n}_{0}\在{\mathbb{Z}}中,n n是自变量,Δα{\Delta}^{\alpha}是α\alpha阶分数差,α∈R\alpha在{\ mathbb{R}中},Fn:{n}×Rn−n0+1→ Rs{F}_{n} :\left-{n}_{0}+1}\to{\mathbb{R}}^{s},s⩾1s\geqslant 1是一个固定整数,x:{n 0,n 0+1,…}→ R s x:\left\{{n}_{0},{n}_{0}+1,\ldots\right\}\to是一个因变量(未知)。对于每个n⩾n0n\geqslant,使用收回原理来证明图保留在给定域中的解的存在性{n}_{0},然后作为进一步证明线性非齐次离散方程组Δαx(n+1)=a(n)x(n)+δ{1em}n={n}_{0},{n}_{0}+1,\ldots,其中A(n)A\left(n)是一个平方矩阵,δ(n)\delta\left是一个向量函数。举例说明了所导出的陈述,讨论了可能的概括,并提出了未来研究的悬而未决的问题。
Bounded solutions to systems of fractional discrete equations
Abstract The article is concerned with systems of fractional discrete equations Δ α x ( n + 1 ) = F n ( n , x ( n ) , x ( n − 1 ) , … , x ( n 0 ) ) , n = n 0 , n 0 + 1 , … , {\Delta }^{\alpha }x\left(n+1)={F}_{n}\left(n,x\left(n),x\left(n-1),\ldots ,x\left({n}_{0})),\hspace{1em}n={n}_{0},{n}_{0}+1,\ldots , where n 0 ∈ Z {n}_{0}\in {\mathbb{Z}} , n n is an independent variable, Δ α {\Delta }^{\alpha } is an α \alpha -order fractional difference, α ∈ R \alpha \in {\mathbb{R}} , F n : { n } × R n − n 0 + 1 → R s {F}_{n}:\left\{n\right\}\times {{\mathbb{R}}}^{n-{n}_{0}+1}\to {{\mathbb{R}}}^{s} , s ⩾ 1 s\geqslant 1 is a fixed integer, and x : { n 0 , n 0 + 1 , … } → R s x:\left\{{n}_{0},{n}_{0}+1,\ldots \right\}\to {{\mathbb{R}}}^{s} is a dependent (unknown) variable. A retract principle is used to prove the existence of solutions with graphs remaining in a given domain for every n ⩾ n 0 n\geqslant {n}_{0} , which then serves as a basis for further proving the existence of bounded solutions to a linear nonhomogeneous system of discrete equations Δ α x ( n + 1 ) = A ( n ) x ( n ) + δ ( n ) , n = n 0 , n 0 + 1 , … , {\Delta }^{\alpha }x\left(n+1)=A\left(n)x\left(n)+\delta \left(n),\hspace{1em}n={n}_{0},{n}_{0}+1,\ldots , where A ( n ) A\left(n) is a square matrix and δ ( n ) \delta \left(n) is a vector function. Illustrative examples accompany the statements derived, possible generalizations are discussed, and open problems for future research are formulated as well.
期刊介绍:
Advances in Nonlinear Analysis (ANONA) aims to publish selected research contributions devoted to nonlinear problems coming from different areas, with particular reference to those introducing new techniques capable of solving a wide range of problems. The Journal focuses on papers that address significant problems in pure and applied nonlinear analysis. ANONA seeks to present the most significant advances in this field to a wide readership, including researchers and graduate students in mathematics, physics, and engineering.