{"title":"一种基于FPGA的硬件低成本、低功耗目标识别与分选系统","authors":"Yulu Wang, Yi Han, Jun Chen, Zhou Wang, Yi Zhong","doi":"10.3390/wevj14090245","DOIUrl":null,"url":null,"abstract":"In autonomous driving systems, high-speed and real-time image processing, along with object recognition, are crucial technologies. This paper builds upon the research achievements in industrial item-sorting systems and proposes an object-recognition and sorting system for autonomous driving. In industrial sorting lines, goods-sorting robots often need to work at high speeds to efficiently sort large volumes of items. This poses a challenge to the robot’s real-time vision and sorting capabilities, making it both practical and economically viable to implement a real-time and low-cost sorting system in a real-world industrial sorting line. Existing sorting systems have limitations such as high cost, high computing resource consumption, and high power consumption. These issues mean that existing sorting systems are typically used only in large industrial plants. In this paper, we design a high-speed, low-cost, low-resource-consumption FPGA (Field-Programmable Gate Array)-based item-sorting system that achieves similar performance to current mainstream sorting systems but at a lower cost and consumption. The recognition component employs a morphological-recognition method, which segments the image using a frame difference algorithm and then extracts the color and shape features of the items. To handle sorting, a six-degrees-of-freedom robotic arm is introduced into the sorting segment. The improved cubic B-spline interpolation algorithm is employed to plan the motion trajectory and consequently control the robotic arm to execute the corresponding actions. Through a series of experiments, this system achieves an average recognition delay of 25.26 ms, ensures smooth operation of the gripping motion trajectory, minimizes resource consumption, and reduces implementation costs.","PeriodicalId":38979,"journal":{"name":"World Electric Vehicle Journal","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An FPGA-Based Hardware Low-Cost, Low-Consumption Target-Recognition and Sorting System\",\"authors\":\"Yulu Wang, Yi Han, Jun Chen, Zhou Wang, Yi Zhong\",\"doi\":\"10.3390/wevj14090245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In autonomous driving systems, high-speed and real-time image processing, along with object recognition, are crucial technologies. This paper builds upon the research achievements in industrial item-sorting systems and proposes an object-recognition and sorting system for autonomous driving. In industrial sorting lines, goods-sorting robots often need to work at high speeds to efficiently sort large volumes of items. This poses a challenge to the robot’s real-time vision and sorting capabilities, making it both practical and economically viable to implement a real-time and low-cost sorting system in a real-world industrial sorting line. Existing sorting systems have limitations such as high cost, high computing resource consumption, and high power consumption. These issues mean that existing sorting systems are typically used only in large industrial plants. In this paper, we design a high-speed, low-cost, low-resource-consumption FPGA (Field-Programmable Gate Array)-based item-sorting system that achieves similar performance to current mainstream sorting systems but at a lower cost and consumption. The recognition component employs a morphological-recognition method, which segments the image using a frame difference algorithm and then extracts the color and shape features of the items. To handle sorting, a six-degrees-of-freedom robotic arm is introduced into the sorting segment. The improved cubic B-spline interpolation algorithm is employed to plan the motion trajectory and consequently control the robotic arm to execute the corresponding actions. Through a series of experiments, this system achieves an average recognition delay of 25.26 ms, ensures smooth operation of the gripping motion trajectory, minimizes resource consumption, and reduces implementation costs.\",\"PeriodicalId\":38979,\"journal\":{\"name\":\"World Electric Vehicle Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World Electric Vehicle Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/wevj14090245\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Electric Vehicle Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/wevj14090245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
An FPGA-Based Hardware Low-Cost, Low-Consumption Target-Recognition and Sorting System
In autonomous driving systems, high-speed and real-time image processing, along with object recognition, are crucial technologies. This paper builds upon the research achievements in industrial item-sorting systems and proposes an object-recognition and sorting system for autonomous driving. In industrial sorting lines, goods-sorting robots often need to work at high speeds to efficiently sort large volumes of items. This poses a challenge to the robot’s real-time vision and sorting capabilities, making it both practical and economically viable to implement a real-time and low-cost sorting system in a real-world industrial sorting line. Existing sorting systems have limitations such as high cost, high computing resource consumption, and high power consumption. These issues mean that existing sorting systems are typically used only in large industrial plants. In this paper, we design a high-speed, low-cost, low-resource-consumption FPGA (Field-Programmable Gate Array)-based item-sorting system that achieves similar performance to current mainstream sorting systems but at a lower cost and consumption. The recognition component employs a morphological-recognition method, which segments the image using a frame difference algorithm and then extracts the color and shape features of the items. To handle sorting, a six-degrees-of-freedom robotic arm is introduced into the sorting segment. The improved cubic B-spline interpolation algorithm is employed to plan the motion trajectory and consequently control the robotic arm to execute the corresponding actions. Through a series of experiments, this system achieves an average recognition delay of 25.26 ms, ensures smooth operation of the gripping motion trajectory, minimizes resource consumption, and reduces implementation costs.