嗅球损伤后海马淀粉样蛋白黑洞破坏的组织病理学新发现

IF 0.4 Q4 NEUROSCIENCES Archives of Neuroscience Pub Date : 2022-09-06 DOI:10.5812/ans-123169
M. Aydın, A. Aydin, Aybike Aydin, E. Oral Ahiskalioglu, A. Ahıskalıoğlu, S. Ozmen, A. Kanat
{"title":"嗅球损伤后海马淀粉样蛋白黑洞破坏的组织病理学新发现","authors":"M. Aydın, A. Aydin, Aybike Aydin, E. Oral Ahiskalioglu, A. Ahıskalıoğlu, S. Ozmen, A. Kanat","doi":"10.5812/ans-123169","DOIUrl":null,"url":null,"abstract":"Background: Many infinite theories have been suggested to explain memory loss in neurodegenerative diseases. However, there are clear data that iron-containing neurofibrillary networks can cause neuron death and erase the memory of neurons, just like black holes in space. Objectives: Ths study aimed to investigate the electromagnetic properties of iron-loaded neurofibrillary networks formed in the hippocampus as a result of damage to the olfactory nerves, just like black holes in space, as well as whether they cause neuron death and memory loss. Methods: All rats were tested with star maze performance before, 3 weeks, and 3 months after surgery. The data used in the study were obtained from the subjects in the experimental groups who had been followed up for 3 months with control (GI; n = 5), SHAM (GII; n = 5) with only frontal burr hole, and study (GIII; n = 15) animals with olfactory bulb lesion. All rats were tested with star maze performance before, 3 weeks, and 3 months after surgery. The olfactory bulbs and hippocampus of subjects were examined by stereological methods. Olfactory bulb volumes, degenerated neuron densities of the hippocampus, and numbers of hippocampal black holes were estimated quantitatively, and results were statistically analyzed by a 1-way analysis of variance (ANOVA). The properties of black holes in the brains and the universe were compared theoretically. Results: The mean olfactory bulb volumes, degenerated neuron density, and black holes of the hippocampus were estimated as 4.43 ± 0.22 mm3, 42 ± 9 mm3, and 3 ± 1 mm3 in GI, 4.01 ± 0.19 mm3, 257 ± 78 mm3, and 11 ± 3 mm3 in GII, and 2.4 ± 0.8 mm3, 1675 ± 119 mm3, and 34 ± 7 mm3 in GIII. All animals were tested with star maze performance before, 3 weeks, and 3 months after surgery. Latency, distance, speed, and path efficiency values of all animals were detected. The more diminished olfactory bulb volume (P < 0.00001) causes more apoptotic neurons and black holes in the hippocampus (P < 0.0001) and more memory loss in olfactory bulb lesion (OBL)-applied animals (P < 0.005). Conclusions: Hippocampal black holes, which are similar to black holes in terms of their formation processes, may be responsible for neuronal losses and memory erasures in the brain by acting like black holes in space. These amyloid plaques, which cause neuron death and memory loss, will be called data-deleting amyloid black holes (DADA-Black Holes) in the paper.","PeriodicalId":43970,"journal":{"name":"Archives of Neuroscience","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"New Histophatological Finding About Data Destroying Amyloid Black Holes in Hippocampus Following Olfactory Bulb Lesion Like as the Universe\",\"authors\":\"M. Aydın, A. Aydin, Aybike Aydin, E. Oral Ahiskalioglu, A. Ahıskalıoğlu, S. Ozmen, A. Kanat\",\"doi\":\"10.5812/ans-123169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: Many infinite theories have been suggested to explain memory loss in neurodegenerative diseases. However, there are clear data that iron-containing neurofibrillary networks can cause neuron death and erase the memory of neurons, just like black holes in space. Objectives: Ths study aimed to investigate the electromagnetic properties of iron-loaded neurofibrillary networks formed in the hippocampus as a result of damage to the olfactory nerves, just like black holes in space, as well as whether they cause neuron death and memory loss. Methods: All rats were tested with star maze performance before, 3 weeks, and 3 months after surgery. The data used in the study were obtained from the subjects in the experimental groups who had been followed up for 3 months with control (GI; n = 5), SHAM (GII; n = 5) with only frontal burr hole, and study (GIII; n = 15) animals with olfactory bulb lesion. All rats were tested with star maze performance before, 3 weeks, and 3 months after surgery. The olfactory bulbs and hippocampus of subjects were examined by stereological methods. Olfactory bulb volumes, degenerated neuron densities of the hippocampus, and numbers of hippocampal black holes were estimated quantitatively, and results were statistically analyzed by a 1-way analysis of variance (ANOVA). The properties of black holes in the brains and the universe were compared theoretically. Results: The mean olfactory bulb volumes, degenerated neuron density, and black holes of the hippocampus were estimated as 4.43 ± 0.22 mm3, 42 ± 9 mm3, and 3 ± 1 mm3 in GI, 4.01 ± 0.19 mm3, 257 ± 78 mm3, and 11 ± 3 mm3 in GII, and 2.4 ± 0.8 mm3, 1675 ± 119 mm3, and 34 ± 7 mm3 in GIII. All animals were tested with star maze performance before, 3 weeks, and 3 months after surgery. Latency, distance, speed, and path efficiency values of all animals were detected. The more diminished olfactory bulb volume (P < 0.00001) causes more apoptotic neurons and black holes in the hippocampus (P < 0.0001) and more memory loss in olfactory bulb lesion (OBL)-applied animals (P < 0.005). Conclusions: Hippocampal black holes, which are similar to black holes in terms of their formation processes, may be responsible for neuronal losses and memory erasures in the brain by acting like black holes in space. These amyloid plaques, which cause neuron death and memory loss, will be called data-deleting amyloid black holes (DADA-Black Holes) in the paper.\",\"PeriodicalId\":43970,\"journal\":{\"name\":\"Archives of Neuroscience\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Neuroscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5812/ans-123169\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5812/ans-123169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 3

摘要

背景:人们提出了许多无限的理论来解释神经退行性疾病中的记忆丧失。然而,有明确的数据表明,含铁的神经原纤维网络会导致神经元死亡,并消除神经元的记忆,就像太空中的黑洞一样。目的:本研究旨在研究嗅觉神经损伤后海马内形成的铁负载神经原纤维网络的电磁特性,如空间黑洞,以及它们是否会导致神经元死亡和记忆丧失。方法:术前、术后3周、术后3个月对所有大鼠进行星形迷宫测试。研究中使用的数据来自实验组的受试者,随访3个月,对照组(GI;n = 5), SHAM (GII;n = 5),且研究(GIII;嗅球损伤动物15只。在手术前、术后3周和3个月对所有大鼠进行星形迷宫测试。用体视学方法观察受试者的嗅球和海马。定量估计海马嗅球体积、海马退行性神经元密度和海马黑洞数量,并采用单因素方差分析(ANOVA)对结果进行统计学分析。从理论上比较了大脑和宇宙中黑洞的性质。结果:GI组嗅球体积、退行性神经元密度和海马黑洞的平均值分别为4.43±0.22 mm3、42±9 mm3和3±1 mm3, GII组为4.01±0.19 mm3、257±78 mm3和11±3 mm3, GIII组为2.4±0.8 mm3、1675±119 mm3和34±7 mm3。在手术前、手术后3周和手术后3个月对所有动物进行星形迷宫测试。检测所有动物的潜伏期、距离、速度和路径效率值。嗅球体积越小(P < 0.00001),海马中神经元和黑洞的凋亡越多(P < 0.0001),嗅球损伤(OBL)动物的记忆丧失越多(P < 0.005)。结论:海马体黑洞在形成过程上与黑洞相似,其作用类似于空间黑洞,可能导致大脑中神经元的丢失和记忆的消除。这些导致神经元死亡和记忆丧失的淀粉样斑块将在论文中被称为数据删除淀粉样黑洞(DADA-Black holes)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
New Histophatological Finding About Data Destroying Amyloid Black Holes in Hippocampus Following Olfactory Bulb Lesion Like as the Universe
Background: Many infinite theories have been suggested to explain memory loss in neurodegenerative diseases. However, there are clear data that iron-containing neurofibrillary networks can cause neuron death and erase the memory of neurons, just like black holes in space. Objectives: Ths study aimed to investigate the electromagnetic properties of iron-loaded neurofibrillary networks formed in the hippocampus as a result of damage to the olfactory nerves, just like black holes in space, as well as whether they cause neuron death and memory loss. Methods: All rats were tested with star maze performance before, 3 weeks, and 3 months after surgery. The data used in the study were obtained from the subjects in the experimental groups who had been followed up for 3 months with control (GI; n = 5), SHAM (GII; n = 5) with only frontal burr hole, and study (GIII; n = 15) animals with olfactory bulb lesion. All rats were tested with star maze performance before, 3 weeks, and 3 months after surgery. The olfactory bulbs and hippocampus of subjects were examined by stereological methods. Olfactory bulb volumes, degenerated neuron densities of the hippocampus, and numbers of hippocampal black holes were estimated quantitatively, and results were statistically analyzed by a 1-way analysis of variance (ANOVA). The properties of black holes in the brains and the universe were compared theoretically. Results: The mean olfactory bulb volumes, degenerated neuron density, and black holes of the hippocampus were estimated as 4.43 ± 0.22 mm3, 42 ± 9 mm3, and 3 ± 1 mm3 in GI, 4.01 ± 0.19 mm3, 257 ± 78 mm3, and 11 ± 3 mm3 in GII, and 2.4 ± 0.8 mm3, 1675 ± 119 mm3, and 34 ± 7 mm3 in GIII. All animals were tested with star maze performance before, 3 weeks, and 3 months after surgery. Latency, distance, speed, and path efficiency values of all animals were detected. The more diminished olfactory bulb volume (P < 0.00001) causes more apoptotic neurons and black holes in the hippocampus (P < 0.0001) and more memory loss in olfactory bulb lesion (OBL)-applied animals (P < 0.005). Conclusions: Hippocampal black holes, which are similar to black holes in terms of their formation processes, may be responsible for neuronal losses and memory erasures in the brain by acting like black holes in space. These amyloid plaques, which cause neuron death and memory loss, will be called data-deleting amyloid black holes (DADA-Black Holes) in the paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archives of Neuroscience
Archives of Neuroscience NEUROSCIENCES-
自引率
0.00%
发文量
32
期刊介绍: Archives of neuroscience is a clinical and basic journal which is informative to all practitioners like Neurosurgeons, Neurologists, Psychiatrists, Neuroscientists. It is the official journal of Brain and Spinal Injury Research Center. The Major theme of this journal is to follow the path of scientific collaboration, spontaneity, and goodwill for the future, by providing up-to-date knowledge for the readers. The journal aims at covering different fields, as the name implies, ranging from research in basic and clinical sciences to core topics such as patient care, education, procuring and correct utilization of resources and bringing to limelight the cherished goals of the institute in providing a standard care for the physically disabled patients. This quarterly journal offers a venue for our researchers and scientists to vent their innovative and constructive research works. The scope of the journal is as far wide as the universe as being declared by the name of the journal, but our aim is to pursue our sacred goals in providing a panacea for the intractable ailments, which leave a psychological element in the daily life of such patients. This authoritative clinical and basic journal was founded by Professor Madjid Samii in 2012.
期刊最新文献
Effect of Propofol and Isoflurane on Postoperative Cognitive Dysfunction Following Elective Laminectomy Surgery in Adult Elderly Patients: A Randomized Controlled Trial Study Evaluation of the Prevalence and Predictive Factors of Post-COVID Cognitive Disorders Among Iranian COVID-19 Recuperated Individuals: A Bayesian Analysis Comparison of Ketamine to Haloperidol for Preventing Delirium in ICU Elderly Patients Posterior Reversible Encephalopathy Syndrome in a Hospitalized Pregnant Woman with SARS-CoV-2 Infection: A Case Report Facial and Cochlear Nerves Outcomes in the Surgical Resection of Giant Vestibular Schwannoma: Is There Any Predictive Value for Intraoperative Neuromonitoring of the Facial Nerve?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1