{"title":"具有表面效应的柔性电双层圆形纳米板的机电响应","authors":"Shasha Zhou, Anqing Li, Rongmin Zhang, Lu Qi, Fei Ren, Zumei Zheng, Jinwei Qiao, Yujing Sun, Shenjie Zhou","doi":"10.1007/s10999-023-09672-7","DOIUrl":null,"url":null,"abstract":"<div><p>Based on the theory of flexoelectricity in elastic dielectrics and the principle of minimum potential energy, a new theoretical model of bilayer circular nano-plate containing a piezoelectric layer is constructed. This model is used to analyze the effects of external loading, applied voltage, flexoelectric effect, and surface effect on the bending deflection, polarization, and normalized electric potential of the nano-plate. Numerical results indicate that external loading and applied voltage have opposite effects on the radial deflection of the bilayer circular nano-plate, with external loading having a more significant influence on deflection than the flexoelectric effect. Applied voltage also affects the normalized electric potential of the bilayer nano-plate. In the presence of negative surface residual stress, the deflection is mainly influenced by the flexoelectric effect. When the surface residual stress is positive and the ratio of radius to thickness is less than 25, the surface effect dominates the deflection behavior. Additionally, the positive or negative surface residual stress leads to an increase or decrease in polarization. The results provide a theoretical basis for the design of intelligent components containing piezoelectric bilayer circular nano-plates.</p></div>","PeriodicalId":593,"journal":{"name":"International Journal of Mechanics and Materials in Design","volume":"20 2","pages":"209 - 231"},"PeriodicalIF":2.7000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electro-mechanical responses of flexoelectric bilayer circular nano-plate with surface effect\",\"authors\":\"Shasha Zhou, Anqing Li, Rongmin Zhang, Lu Qi, Fei Ren, Zumei Zheng, Jinwei Qiao, Yujing Sun, Shenjie Zhou\",\"doi\":\"10.1007/s10999-023-09672-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Based on the theory of flexoelectricity in elastic dielectrics and the principle of minimum potential energy, a new theoretical model of bilayer circular nano-plate containing a piezoelectric layer is constructed. This model is used to analyze the effects of external loading, applied voltage, flexoelectric effect, and surface effect on the bending deflection, polarization, and normalized electric potential of the nano-plate. Numerical results indicate that external loading and applied voltage have opposite effects on the radial deflection of the bilayer circular nano-plate, with external loading having a more significant influence on deflection than the flexoelectric effect. Applied voltage also affects the normalized electric potential of the bilayer nano-plate. In the presence of negative surface residual stress, the deflection is mainly influenced by the flexoelectric effect. When the surface residual stress is positive and the ratio of radius to thickness is less than 25, the surface effect dominates the deflection behavior. Additionally, the positive or negative surface residual stress leads to an increase or decrease in polarization. The results provide a theoretical basis for the design of intelligent components containing piezoelectric bilayer circular nano-plates.</p></div>\",\"PeriodicalId\":593,\"journal\":{\"name\":\"International Journal of Mechanics and Materials in Design\",\"volume\":\"20 2\",\"pages\":\"209 - 231\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mechanics and Materials in Design\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10999-023-09672-7\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanics and Materials in Design","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10999-023-09672-7","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Electro-mechanical responses of flexoelectric bilayer circular nano-plate with surface effect
Based on the theory of flexoelectricity in elastic dielectrics and the principle of minimum potential energy, a new theoretical model of bilayer circular nano-plate containing a piezoelectric layer is constructed. This model is used to analyze the effects of external loading, applied voltage, flexoelectric effect, and surface effect on the bending deflection, polarization, and normalized electric potential of the nano-plate. Numerical results indicate that external loading and applied voltage have opposite effects on the radial deflection of the bilayer circular nano-plate, with external loading having a more significant influence on deflection than the flexoelectric effect. Applied voltage also affects the normalized electric potential of the bilayer nano-plate. In the presence of negative surface residual stress, the deflection is mainly influenced by the flexoelectric effect. When the surface residual stress is positive and the ratio of radius to thickness is less than 25, the surface effect dominates the deflection behavior. Additionally, the positive or negative surface residual stress leads to an increase or decrease in polarization. The results provide a theoretical basis for the design of intelligent components containing piezoelectric bilayer circular nano-plates.
期刊介绍:
It is the objective of this journal to provide an effective medium for the dissemination of recent advances and original works in mechanics and materials'' engineering and their impact on the design process in an integrated, highly focused and coherent format. The goal is to enable mechanical, aeronautical, civil, automotive, biomedical, chemical and nuclear engineers, researchers and scientists to keep abreast of recent developments and exchange ideas on a number of topics relating to the use of mechanics and materials in design.
Analytical synopsis of contents:
The following non-exhaustive list is considered to be within the scope of the International Journal of Mechanics and Materials in Design:
Intelligent Design:
Nano-engineering and Nano-science in Design;
Smart Materials and Adaptive Structures in Design;
Mechanism(s) Design;
Design against Failure;
Design for Manufacturing;
Design of Ultralight Structures;
Design for a Clean Environment;
Impact and Crashworthiness;
Microelectronic Packaging Systems.
Advanced Materials in Design:
Newly Engineered Materials;
Smart Materials and Adaptive Structures;
Micromechanical Modelling of Composites;
Damage Characterisation of Advanced/Traditional Materials;
Alternative Use of Traditional Materials in Design;
Functionally Graded Materials;
Failure Analysis: Fatigue and Fracture;
Multiscale Modelling Concepts and Methodology;
Interfaces, interfacial properties and characterisation.
Design Analysis and Optimisation:
Shape and Topology Optimisation;
Structural Optimisation;
Optimisation Algorithms in Design;
Nonlinear Mechanics in Design;
Novel Numerical Tools in Design;
Geometric Modelling and CAD Tools in Design;
FEM, BEM and Hybrid Methods;
Integrated Computer Aided Design;
Computational Failure Analysis;
Coupled Thermo-Electro-Mechanical Designs.