Xiongyao Luo, W. Feng, Haoshen Zhu, Liang Wu, W. Che, Q. Xue
{"title":"65纳米CMOS中P₁dB改进技术的毫米波变增益功率放大器","authors":"Xiongyao Luo, W. Feng, Haoshen Zhu, Liang Wu, W. Che, Q. Xue","doi":"10.1109/LMWC.2022.3177656","DOIUrl":null,"url":null,"abstract":"A millimeter-wave (MMW) variable-gain power amplifier (VGPA) with <inline-formula> <tex-math notation=\"LaTeX\">$P_{\\mathrm {1\\,dB}}$ </tex-math></inline-formula> improvement technique is proposed. The proposed VGPA consists of a postdistortion power amplifier (PDPA) and a variable-gain amplifier (VGA), for realizing high output power 1-dB compression point (<inline-formula> <tex-math notation=\"LaTeX\">$P_{\\mathrm {1\\,dB}}$ </tex-math></inline-formula>) and variable gain, respectively. To improve the <inline-formula> <tex-math notation=\"LaTeX\">$P_{\\mathrm {1\\,dB}}$ </tex-math></inline-formula> performances, a postdistortion technique with peaking-mode gain response shaping is proposed. This new approach has less amplitude-to-amplitude (AM–AM) distortion. Fabricated in 65-nm CMOS process, the proposed VGPA achieves 16-dBm output <inline-formula> <tex-math notation=\"LaTeX\">$P_{\\mathrm {1\\,dB}}$ </tex-math></inline-formula> with 29.5% power added efficiency (PAE) and 16.7-dBm saturated output power (<inline-formula> <tex-math notation=\"LaTeX\">$P_{\\mathrm {sat}}$ </tex-math></inline-formula>) with 34% peak PAE. The maximum gain reaches 33.1 dB with 3-dB bandwidth from 23.1 to 29 GHz and 31.1-dB dynamic range of gain adjustment.","PeriodicalId":13130,"journal":{"name":"IEEE Microwave and Wireless Components Letters","volume":"32 1","pages":"1427-1430"},"PeriodicalIF":2.9000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Millimeter-Wave Variable-Gain Power Amplifier With P₁ dB Improvement Technique in 65-nm CMOS\",\"authors\":\"Xiongyao Luo, W. Feng, Haoshen Zhu, Liang Wu, W. Che, Q. Xue\",\"doi\":\"10.1109/LMWC.2022.3177656\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A millimeter-wave (MMW) variable-gain power amplifier (VGPA) with <inline-formula> <tex-math notation=\\\"LaTeX\\\">$P_{\\\\mathrm {1\\\\,dB}}$ </tex-math></inline-formula> improvement technique is proposed. The proposed VGPA consists of a postdistortion power amplifier (PDPA) and a variable-gain amplifier (VGA), for realizing high output power 1-dB compression point (<inline-formula> <tex-math notation=\\\"LaTeX\\\">$P_{\\\\mathrm {1\\\\,dB}}$ </tex-math></inline-formula>) and variable gain, respectively. To improve the <inline-formula> <tex-math notation=\\\"LaTeX\\\">$P_{\\\\mathrm {1\\\\,dB}}$ </tex-math></inline-formula> performances, a postdistortion technique with peaking-mode gain response shaping is proposed. This new approach has less amplitude-to-amplitude (AM–AM) distortion. Fabricated in 65-nm CMOS process, the proposed VGPA achieves 16-dBm output <inline-formula> <tex-math notation=\\\"LaTeX\\\">$P_{\\\\mathrm {1\\\\,dB}}$ </tex-math></inline-formula> with 29.5% power added efficiency (PAE) and 16.7-dBm saturated output power (<inline-formula> <tex-math notation=\\\"LaTeX\\\">$P_{\\\\mathrm {sat}}$ </tex-math></inline-formula>) with 34% peak PAE. The maximum gain reaches 33.1 dB with 3-dB bandwidth from 23.1 to 29 GHz and 31.1-dB dynamic range of gain adjustment.\",\"PeriodicalId\":13130,\"journal\":{\"name\":\"IEEE Microwave and Wireless Components Letters\",\"volume\":\"32 1\",\"pages\":\"1427-1430\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Microwave and Wireless Components Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/LMWC.2022.3177656\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Microwave and Wireless Components Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/LMWC.2022.3177656","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A Millimeter-Wave Variable-Gain Power Amplifier With P₁ dB Improvement Technique in 65-nm CMOS
A millimeter-wave (MMW) variable-gain power amplifier (VGPA) with $P_{\mathrm {1\,dB}}$ improvement technique is proposed. The proposed VGPA consists of a postdistortion power amplifier (PDPA) and a variable-gain amplifier (VGA), for realizing high output power 1-dB compression point ($P_{\mathrm {1\,dB}}$ ) and variable gain, respectively. To improve the $P_{\mathrm {1\,dB}}$ performances, a postdistortion technique with peaking-mode gain response shaping is proposed. This new approach has less amplitude-to-amplitude (AM–AM) distortion. Fabricated in 65-nm CMOS process, the proposed VGPA achieves 16-dBm output $P_{\mathrm {1\,dB}}$ with 29.5% power added efficiency (PAE) and 16.7-dBm saturated output power ($P_{\mathrm {sat}}$ ) with 34% peak PAE. The maximum gain reaches 33.1 dB with 3-dB bandwidth from 23.1 to 29 GHz and 31.1-dB dynamic range of gain adjustment.
期刊介绍:
The IEEE Microwave and Wireless Components Letters (MWCL) publishes four-page papers (3 pages of text + up to 1 page of references) that focus on microwave theory, techniques and applications as they relate to components, devices, circuits, biological effects, and systems involving the generation, modulation, demodulation, control, transmission, and detection of microwave signals. This includes scientific, technical, medical and industrial activities. Microwave theory and techniques relates to electromagnetic waves in the frequency range of a few MHz and a THz; other spectral regions and wave types are included within the scope of the MWCL whenever basic microwave theory and techniques can yield useful results. Generally, this occurs in the theory of wave propagation in structures with dimensions comparable to a wavelength, and in the related techniques for analysis and design.