灵芝水提取物pH值对纳米银绿色合成的影响

IF 1.7 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Advances in Natural Sciences: Nanoscience and Nanotechnology Pub Date : 2023-08-07 DOI:10.1088/2043-6262/acebd4
O. Smirnov, V. Dzhagan, O. Yeshchenko, M. Kovalenko, O. Kapush, M. Vuichyk, V. Dzhagan, N. Mazur, V. Kalynovskyi, M. Skoryk, V. Yukhymchuk
{"title":"灵芝水提取物pH值对纳米银绿色合成的影响","authors":"O. Smirnov, V. Dzhagan, O. Yeshchenko, M. Kovalenko, O. Kapush, M. Vuichyk, V. Dzhagan, N. Mazur, V. Kalynovskyi, M. Skoryk, V. Yukhymchuk","doi":"10.1088/2043-6262/acebd4","DOIUrl":null,"url":null,"abstract":"Perspective applications of Ag nanoparticles (NPs) stimulate intense research on their affordable synthesis, including green routes. The use of fungi extracts has advantages over other organisms, because of their relatively easy isolation and higher efficiency in a reduction of metal ions and NP formation. Here we report mycosynthesis of AgNPs based on Ganoderma lucidum fruit body extract with different pH values as the bioreducing and stabilising agent. Stable NPs colloids with distinct plasmonic resonance peaking at 408–418 nm are obtained by using photoreduction in a broad pH range (5 to 11). Synthesis efficiency drops only at very acidic conditions, pH = 2.5. The NP size and morphology are studied by dynamic light scattering and scanning electron microscopy. An analysis of FTIR spectra of pure analyte and NP sample indicates that stabilisation of the AgNPs by the components of Ganoderma lucidum extract may take place via forming chemical bonds with the NP surface. These bio-friendly AgNPs are both optically and chemically active, as inferred from surface-enhanced Raman scattering of a standard dye analytes and charge transfer-induced quenching of the photoluminescence of both dye and inorganic NPs, and can be studied for various applications which require direct access to the AgNP surface.","PeriodicalId":7359,"journal":{"name":"Advances in Natural Sciences: Nanoscience and Nanotechnology","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Effect of pH of Ganoderma lucidum aqueous extract on green synthesis of silver nanoparticles\",\"authors\":\"O. Smirnov, V. Dzhagan, O. Yeshchenko, M. Kovalenko, O. Kapush, M. Vuichyk, V. Dzhagan, N. Mazur, V. Kalynovskyi, M. Skoryk, V. Yukhymchuk\",\"doi\":\"10.1088/2043-6262/acebd4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Perspective applications of Ag nanoparticles (NPs) stimulate intense research on their affordable synthesis, including green routes. The use of fungi extracts has advantages over other organisms, because of their relatively easy isolation and higher efficiency in a reduction of metal ions and NP formation. Here we report mycosynthesis of AgNPs based on Ganoderma lucidum fruit body extract with different pH values as the bioreducing and stabilising agent. Stable NPs colloids with distinct plasmonic resonance peaking at 408–418 nm are obtained by using photoreduction in a broad pH range (5 to 11). Synthesis efficiency drops only at very acidic conditions, pH = 2.5. The NP size and morphology are studied by dynamic light scattering and scanning electron microscopy. An analysis of FTIR spectra of pure analyte and NP sample indicates that stabilisation of the AgNPs by the components of Ganoderma lucidum extract may take place via forming chemical bonds with the NP surface. These bio-friendly AgNPs are both optically and chemically active, as inferred from surface-enhanced Raman scattering of a standard dye analytes and charge transfer-induced quenching of the photoluminescence of both dye and inorganic NPs, and can be studied for various applications which require direct access to the AgNP surface.\",\"PeriodicalId\":7359,\"journal\":{\"name\":\"Advances in Natural Sciences: Nanoscience and Nanotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Natural Sciences: Nanoscience and Nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2043-6262/acebd4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Natural Sciences: Nanoscience and Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2043-6262/acebd4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

银纳米颗粒(NP)的前景应用激发了对其廉价合成的深入研究,包括绿色路线。真菌提取物的使用与其他生物相比具有优势,因为它们相对容易分离,并且在减少金属离子和NP形成方面具有更高的效率。在这里,我们报道了以不同pH值的灵芝果体提取物为生物还原剂和稳定剂的AgNPs的真菌合成。通过在宽pH范围(5至11)内使用光还原,获得了在408–418 nm处具有明显等离子体共振峰值的稳定NP胶体。合成效率仅在pH=2.5的非常酸性的条件下下降。通过动态光散射和扫描电子显微镜研究了NP的尺寸和形态。对纯分析物和NP样品的FTIR光谱的分析表明,灵芝提取物成分对AgNP的稳定可能通过与NP表面形成化学键来实现。根据标准染料分析物的表面增强拉曼散射和染料和无机NP的电荷转移诱导的光致发光猝灭,这些生物友好型AgNP具有光学和化学活性,并且可以用于需要直接接触AgNP表面的各种应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of pH of Ganoderma lucidum aqueous extract on green synthesis of silver nanoparticles
Perspective applications of Ag nanoparticles (NPs) stimulate intense research on their affordable synthesis, including green routes. The use of fungi extracts has advantages over other organisms, because of their relatively easy isolation and higher efficiency in a reduction of metal ions and NP formation. Here we report mycosynthesis of AgNPs based on Ganoderma lucidum fruit body extract with different pH values as the bioreducing and stabilising agent. Stable NPs colloids with distinct plasmonic resonance peaking at 408–418 nm are obtained by using photoreduction in a broad pH range (5 to 11). Synthesis efficiency drops only at very acidic conditions, pH = 2.5. The NP size and morphology are studied by dynamic light scattering and scanning electron microscopy. An analysis of FTIR spectra of pure analyte and NP sample indicates that stabilisation of the AgNPs by the components of Ganoderma lucidum extract may take place via forming chemical bonds with the NP surface. These bio-friendly AgNPs are both optically and chemically active, as inferred from surface-enhanced Raman scattering of a standard dye analytes and charge transfer-induced quenching of the photoluminescence of both dye and inorganic NPs, and can be studied for various applications which require direct access to the AgNP surface.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Natural Sciences: Nanoscience and Nanotechnology
Advances in Natural Sciences: Nanoscience and Nanotechnology NANOSCIENCE & NANOTECHNOLOGYMATERIALS SCIE-MATERIALS SCIENCE, MULTIDISCIPLINARY
自引率
4.80%
发文量
0
期刊最新文献
Recent advancements of nanoparticles for antiviral therapy Saponin-mediated and microwave-assisted biosynthesis of silver nanoparticles: preparations and anticancer assessment Synthesis, characterization, and cellular investigation of three smart polymeric nanoparticles as efficient plasmid CRISPR (pCRISPR) delivery vehicles Chitosan derived N-doped carbon aerogel nanostructures for high-performance supercapacitors Synergistic effect of cobalt ferrite-graphene oxide based hyperthermia and capsaicin to induce apoptosis and inhibit telomerase activity in breast cancer cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1