建立电感耦合等离子体串联质谱法定量分析高纯镁中超微量杂质元素的新方法

IF 15.8 1区 材料科学 Q1 METALLURGY & METALLURGICAL ENGINEERING Journal of Magnesium and Alloys Pub Date : 2025-01-01 DOI:10.1016/j.jma.2023.07.007
Liang Fu , Guangsheng Huang , Yaobo Hu , Xianhua Chen , Jingfeng Wang , Fusheng Pan
{"title":"建立电感耦合等离子体串联质谱法定量分析高纯镁中超微量杂质元素的新方法","authors":"Liang Fu ,&nbsp;Guangsheng Huang ,&nbsp;Yaobo Hu ,&nbsp;Xianhua Chen ,&nbsp;Jingfeng Wang ,&nbsp;Fusheng Pan","doi":"10.1016/j.jma.2023.07.007","DOIUrl":null,"url":null,"abstract":"<div><div>High purity magnesium is not only an important basic raw material for semiconductor and electronics industries, but also a promising new generation of electrochemical energy storage materials and biomedical materials. Impurities in high-purity magnesium affect material properties, which has become the most critical factor restricting its application. However, accurate analysis of multiple ultra-trace impurity elements in high-purity magnesium is extremely challenging. In this paper, based on the synergistic effect of N<sub>2</sub>O/H<sub>2</sub> reaction gas mixture to eliminate spectral interference of inductively coupled plasma tandem mass spectrometry (ICP-MS/MS), a new strategy for the quantification of 45 ultra-trace impurity elements in high-purity magnesium was proposed. The results indicated that the limits of detection (LOD) were in the range of 0.02–18.5 ng L<sup>−</sup><sup>1</sup>; the LODs of the challenging non-metallic elements Si and S were 18.5 and 12.2 ng L<sup>−</sup><sup>1</sup>, respectively; and the LODs of all the other analytes were less than 10 ng L<sup>−</sup><sup>1</sup>. Even under hot plasma conditions, LODs of alkali metal elements were also less than 5 ng L<sup>−</sup><sup>1</sup>. The spike recovery of each analyte was 93.6%–107%, and the relative standard deviation (RSD) was 3.2%–6.9%, respectively. At a 95% level of confidence, no significant differences were found between the results obtained under the optimal conditions for the analyte with the developed method and the measurement results of SF-ICP-MS. The developed method indicated low LOD, high sample throughput, and complete interference elimination, demonstrating a new avenue for the rapid determination of ultra-trace elements in high-purity magnesium.</div></div>","PeriodicalId":16214,"journal":{"name":"Journal of Magnesium and Alloys","volume":"13 1","pages":"Pages 120-129"},"PeriodicalIF":15.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of a novel strategy for the quantification of ultra-trace impurity elements in high-purity magnesium using inductively coupled plasma tandem mass spectrometry\",\"authors\":\"Liang Fu ,&nbsp;Guangsheng Huang ,&nbsp;Yaobo Hu ,&nbsp;Xianhua Chen ,&nbsp;Jingfeng Wang ,&nbsp;Fusheng Pan\",\"doi\":\"10.1016/j.jma.2023.07.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>High purity magnesium is not only an important basic raw material for semiconductor and electronics industries, but also a promising new generation of electrochemical energy storage materials and biomedical materials. Impurities in high-purity magnesium affect material properties, which has become the most critical factor restricting its application. However, accurate analysis of multiple ultra-trace impurity elements in high-purity magnesium is extremely challenging. In this paper, based on the synergistic effect of N<sub>2</sub>O/H<sub>2</sub> reaction gas mixture to eliminate spectral interference of inductively coupled plasma tandem mass spectrometry (ICP-MS/MS), a new strategy for the quantification of 45 ultra-trace impurity elements in high-purity magnesium was proposed. The results indicated that the limits of detection (LOD) were in the range of 0.02–18.5 ng L<sup>−</sup><sup>1</sup>; the LODs of the challenging non-metallic elements Si and S were 18.5 and 12.2 ng L<sup>−</sup><sup>1</sup>, respectively; and the LODs of all the other analytes were less than 10 ng L<sup>−</sup><sup>1</sup>. Even under hot plasma conditions, LODs of alkali metal elements were also less than 5 ng L<sup>−</sup><sup>1</sup>. The spike recovery of each analyte was 93.6%–107%, and the relative standard deviation (RSD) was 3.2%–6.9%, respectively. At a 95% level of confidence, no significant differences were found between the results obtained under the optimal conditions for the analyte with the developed method and the measurement results of SF-ICP-MS. The developed method indicated low LOD, high sample throughput, and complete interference elimination, demonstrating a new avenue for the rapid determination of ultra-trace elements in high-purity magnesium.</div></div>\",\"PeriodicalId\":16214,\"journal\":{\"name\":\"Journal of Magnesium and Alloys\",\"volume\":\"13 1\",\"pages\":\"Pages 120-129\"},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Magnesium and Alloys\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213956723001482\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnesium and Alloys","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213956723001482","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of a novel strategy for the quantification of ultra-trace impurity elements in high-purity magnesium using inductively coupled plasma tandem mass spectrometry
High purity magnesium is not only an important basic raw material for semiconductor and electronics industries, but also a promising new generation of electrochemical energy storage materials and biomedical materials. Impurities in high-purity magnesium affect material properties, which has become the most critical factor restricting its application. However, accurate analysis of multiple ultra-trace impurity elements in high-purity magnesium is extremely challenging. In this paper, based on the synergistic effect of N2O/H2 reaction gas mixture to eliminate spectral interference of inductively coupled plasma tandem mass spectrometry (ICP-MS/MS), a new strategy for the quantification of 45 ultra-trace impurity elements in high-purity magnesium was proposed. The results indicated that the limits of detection (LOD) were in the range of 0.02–18.5 ng L1; the LODs of the challenging non-metallic elements Si and S were 18.5 and 12.2 ng L1, respectively; and the LODs of all the other analytes were less than 10 ng L1. Even under hot plasma conditions, LODs of alkali metal elements were also less than 5 ng L1. The spike recovery of each analyte was 93.6%–107%, and the relative standard deviation (RSD) was 3.2%–6.9%, respectively. At a 95% level of confidence, no significant differences were found between the results obtained under the optimal conditions for the analyte with the developed method and the measurement results of SF-ICP-MS. The developed method indicated low LOD, high sample throughput, and complete interference elimination, demonstrating a new avenue for the rapid determination of ultra-trace elements in high-purity magnesium.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Magnesium and Alloys
Journal of Magnesium and Alloys Engineering-Mechanics of Materials
CiteScore
20.20
自引率
14.80%
发文量
52
审稿时长
59 days
期刊介绍: The Journal of Magnesium and Alloys serves as a global platform for both theoretical and experimental studies in magnesium science and engineering. It welcomes submissions investigating various scientific and engineering factors impacting the metallurgy, processing, microstructure, properties, and applications of magnesium and alloys. The journal covers all aspects of magnesium and alloy research, including raw materials, alloy casting, extrusion and deformation, corrosion and surface treatment, joining and machining, simulation and modeling, microstructure evolution and mechanical properties, new alloy development, magnesium-based composites, bio-materials and energy materials, applications, and recycling.
期刊最新文献
Spark plasma sintering of a novel Mg-0.7Ca alloy: A comprehensive study Enhancing the formability of flame-retardant magnesium alloy through Zn alloying Magnesium-reinforced sandwich structured composite membranes promote osteogenesis Understanding pyramidal slip-induced deformation bands and dynamic recrystallization in AZWX3100 magnesium alloy Unraveling electrochemical performance of magnesium vanadate-based nanostructures as advanced cathodes for rechargeable aqueous zinc-ion batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1