自组装二苯丙氨酸/香豆素纳米结构的稳态和荧光寿命猝灭法测定水中溶解氧

IF 1.7 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Advances in Natural Sciences: Nanoscience and Nanotechnology Pub Date : 2023-03-01 DOI:10.1088/2043-6262/acc735
Geovany A. Souza, D. Cordeiro, Tatiana D M Ernter
{"title":"自组装二苯丙氨酸/香豆素纳米结构的稳态和荧光寿命猝灭法测定水中溶解氧","authors":"Geovany A. Souza, D. Cordeiro, Tatiana D M Ernter","doi":"10.1088/2043-6262/acc735","DOIUrl":null,"url":null,"abstract":"A fluorescent system formed by the combination of coumarin derivative and self-assembled peptide nanostructures was used as sensing system to determine dissolved oxygen (O2) in water samples. Detection was based on the sensing system fluorescence quenching by O2, measured by steady-state and time-resolved fluorescence spectroscopy and Stern-Volmer plot to correlate fluorescence intensity to O2 concentration in the samples. Also, fluorescence lifetime decays informed about the mechanisms in which the quenching is occurring, indicating that the sensing system is highly sensitive and selective to O2, since quenching occurs by a non-radiative energy transfer from electronic excited singlet states of the system to the O2 molecule. This process was evidenced by the system fluorescence lifetime decrease, yielding Singlet O2 as indicative that this system can also find other technological applications.","PeriodicalId":7359,"journal":{"name":"Advances in Natural Sciences: Nanoscience and Nanotechnology","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Steady-state and fluorescence lifetime quenching of self-assembled diphenylalanine/coumarin nanostructures as a method to determine dissolved O2 in water\",\"authors\":\"Geovany A. Souza, D. Cordeiro, Tatiana D M Ernter\",\"doi\":\"10.1088/2043-6262/acc735\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A fluorescent system formed by the combination of coumarin derivative and self-assembled peptide nanostructures was used as sensing system to determine dissolved oxygen (O2) in water samples. Detection was based on the sensing system fluorescence quenching by O2, measured by steady-state and time-resolved fluorescence spectroscopy and Stern-Volmer plot to correlate fluorescence intensity to O2 concentration in the samples. Also, fluorescence lifetime decays informed about the mechanisms in which the quenching is occurring, indicating that the sensing system is highly sensitive and selective to O2, since quenching occurs by a non-radiative energy transfer from electronic excited singlet states of the system to the O2 molecule. This process was evidenced by the system fluorescence lifetime decrease, yielding Singlet O2 as indicative that this system can also find other technological applications.\",\"PeriodicalId\":7359,\"journal\":{\"name\":\"Advances in Natural Sciences: Nanoscience and Nanotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Natural Sciences: Nanoscience and Nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2043-6262/acc735\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Natural Sciences: Nanoscience and Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2043-6262/acc735","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

采用香豆素衍生物与自组装肽纳米结构结合形成的荧光系统作为传感系统,测定水样中的溶解氧(O2)。检测基于O2荧光猝灭的传感系统,通过稳态和时间分辨荧光光谱和斯特恩-沃尔默图测量荧光强度与样品中O2浓度的相关性。此外,荧光寿命衰减告知猝灭发生的机制,表明传感系统对O2高度敏感和选择性,因为猝灭是通过系统的电子激发单线态向O2分子的非辐射能量转移发生的。这一过程证明了系统的荧光寿命降低,产生单线态O2,表明该系统也可以找到其他技术应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Steady-state and fluorescence lifetime quenching of self-assembled diphenylalanine/coumarin nanostructures as a method to determine dissolved O2 in water
A fluorescent system formed by the combination of coumarin derivative and self-assembled peptide nanostructures was used as sensing system to determine dissolved oxygen (O2) in water samples. Detection was based on the sensing system fluorescence quenching by O2, measured by steady-state and time-resolved fluorescence spectroscopy and Stern-Volmer plot to correlate fluorescence intensity to O2 concentration in the samples. Also, fluorescence lifetime decays informed about the mechanisms in which the quenching is occurring, indicating that the sensing system is highly sensitive and selective to O2, since quenching occurs by a non-radiative energy transfer from electronic excited singlet states of the system to the O2 molecule. This process was evidenced by the system fluorescence lifetime decrease, yielding Singlet O2 as indicative that this system can also find other technological applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Natural Sciences: Nanoscience and Nanotechnology
Advances in Natural Sciences: Nanoscience and Nanotechnology NANOSCIENCE & NANOTECHNOLOGYMATERIALS SCIE-MATERIALS SCIENCE, MULTIDISCIPLINARY
自引率
4.80%
发文量
0
期刊最新文献
Recent advancements of nanoparticles for antiviral therapy Saponin-mediated and microwave-assisted biosynthesis of silver nanoparticles: preparations and anticancer assessment Synthesis, characterization, and cellular investigation of three smart polymeric nanoparticles as efficient plasmid CRISPR (pCRISPR) delivery vehicles Chitosan derived N-doped carbon aerogel nanostructures for high-performance supercapacitors Synergistic effect of cobalt ferrite-graphene oxide based hyperthermia and capsaicin to induce apoptosis and inhibit telomerase activity in breast cancer cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1