{"title":"空间划分问题的模因算法","authors":"Subhodip Biswas, Fanglan Chen, Zhiqian Chen, Chang-Tien Lu, Naren Ramakrishnan","doi":"10.1145/3544779","DOIUrl":null,"url":null,"abstract":"Spatial optimization problems (SOPs) are characterized by spatial relationships governing the decision variables, objectives, and/or constraint functions. In this article, we focus on a specific type of SOP called spatial partitioning, which is a combinatorial problem due to the presence of discrete spatial units. Exact optimization methods do not scale with the size of the problem, especially within practicable time limits. This motivated us to develop population-based metaheuristics for solving such SOPs. However, the search operators employed by these population-based methods are mostly designed for real-parameter continuous optimization problems. For adapting these methods to SOPs, we apply domain knowledge in designing spatially aware search operators for efficiently searching through the discrete search space while preserving the spatial constraints. To this end, we put forward a simple yet effective algorithm called swarm-based spatial memetic algorithm (SPATIAL) and test it on the school (re)districting problem. Detailed experimental investigations are performed on real-world datasets to evaluate the performance of SPATIAL. Besides, ablation studies are performed to understand the role of the individual components of SPATIAL. Additionally, we discuss how SPATIAL is helpful in the real-life planning process and its applicability to different scenarios and motivate future research directions.","PeriodicalId":43641,"journal":{"name":"ACM Transactions on Spatial Algorithms and Systems","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2022-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Memetic Algorithms for Spatial Partitioning Problems\",\"authors\":\"Subhodip Biswas, Fanglan Chen, Zhiqian Chen, Chang-Tien Lu, Naren Ramakrishnan\",\"doi\":\"10.1145/3544779\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spatial optimization problems (SOPs) are characterized by spatial relationships governing the decision variables, objectives, and/or constraint functions. In this article, we focus on a specific type of SOP called spatial partitioning, which is a combinatorial problem due to the presence of discrete spatial units. Exact optimization methods do not scale with the size of the problem, especially within practicable time limits. This motivated us to develop population-based metaheuristics for solving such SOPs. However, the search operators employed by these population-based methods are mostly designed for real-parameter continuous optimization problems. For adapting these methods to SOPs, we apply domain knowledge in designing spatially aware search operators for efficiently searching through the discrete search space while preserving the spatial constraints. To this end, we put forward a simple yet effective algorithm called swarm-based spatial memetic algorithm (SPATIAL) and test it on the school (re)districting problem. Detailed experimental investigations are performed on real-world datasets to evaluate the performance of SPATIAL. Besides, ablation studies are performed to understand the role of the individual components of SPATIAL. Additionally, we discuss how SPATIAL is helpful in the real-life planning process and its applicability to different scenarios and motivate future research directions.\",\"PeriodicalId\":43641,\"journal\":{\"name\":\"ACM Transactions on Spatial Algorithms and Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Spatial Algorithms and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3544779\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Spatial Algorithms and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3544779","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"REMOTE SENSING","Score":null,"Total":0}
Memetic Algorithms for Spatial Partitioning Problems
Spatial optimization problems (SOPs) are characterized by spatial relationships governing the decision variables, objectives, and/or constraint functions. In this article, we focus on a specific type of SOP called spatial partitioning, which is a combinatorial problem due to the presence of discrete spatial units. Exact optimization methods do not scale with the size of the problem, especially within practicable time limits. This motivated us to develop population-based metaheuristics for solving such SOPs. However, the search operators employed by these population-based methods are mostly designed for real-parameter continuous optimization problems. For adapting these methods to SOPs, we apply domain knowledge in designing spatially aware search operators for efficiently searching through the discrete search space while preserving the spatial constraints. To this end, we put forward a simple yet effective algorithm called swarm-based spatial memetic algorithm (SPATIAL) and test it on the school (re)districting problem. Detailed experimental investigations are performed on real-world datasets to evaluate the performance of SPATIAL. Besides, ablation studies are performed to understand the role of the individual components of SPATIAL. Additionally, we discuss how SPATIAL is helpful in the real-life planning process and its applicability to different scenarios and motivate future research directions.
期刊介绍:
ACM Transactions on Spatial Algorithms and Systems (TSAS) is a scholarly journal that publishes the highest quality papers on all aspects of spatial algorithms and systems and closely related disciplines. It has a multi-disciplinary perspective in that it spans a large number of areas where spatial data is manipulated or visualized (regardless of how it is specified - i.e., geometrically or textually) such as geography, geographic information systems (GIS), geospatial and spatiotemporal databases, spatial and metric indexing, location-based services, web-based spatial applications, geographic information retrieval (GIR), spatial reasoning and mining, security and privacy, as well as the related visual computing areas of computer graphics, computer vision, geometric modeling, and visualization where the spatial, geospatial, and spatiotemporal data is central.