Zixian Wei , Zhaoming Wang , Jianan Zhang , Qian Li , Junping Zhang , H.Y. Fu
{"title":"B5G/6G光无线通信的发展","authors":"Zixian Wei , Zhaoming Wang , Jianan Zhang , Qian Li , Junping Zhang , H.Y. Fu","doi":"10.1016/j.pquantelec.2022.100398","DOIUrl":null,"url":null,"abstract":"<div><p><span>The research on optical wireless communication (OWC) has been going on for more than two decades. Particularly, </span>visible light communication (VLC), as a means of OWC combining communication with illumination, has been regarded as a promising indoor high-speed wireless approach for short-distance access. Recently, lightwave, millimeter-wave (mmWave), terahertz (THz) and other spectrum mediums are considered as potential candidates for beyond fifth-generation/sixth-generation (B5G/6G) mobile communication networks. On the basis of previous studies, this review focuses on revealing how the research of next-generation OWC technology should be carried out to meet the requirements of B5G/6G for practical deployment. The research, development and engineering transformation of the OWC systems are a paragon of interdisciplinary. It involves a wide discussion on how to build a high-speed, multi-user, full-duplex, white-light OWC system based on existing technologies by showing the innovations and trade-offs at various levels with material, device, air-interface technology, system and network architecture. The compatibility of OWC is emphasized and some advanced heterogeneous OWC systems are presented, which involves the combination or integration of various functions such as sensing, near-infrared (NIR) beam-steering, positioning and coexistence with radio frequency (RF) communication. Finally, several potential directions are pointed out for the actual engineering deployment in the B5G/6G era.</p></div>","PeriodicalId":414,"journal":{"name":"Progress in Quantum Electronics","volume":null,"pages":null},"PeriodicalIF":7.4000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Evolution of optical wireless communication for B5G/6G\",\"authors\":\"Zixian Wei , Zhaoming Wang , Jianan Zhang , Qian Li , Junping Zhang , H.Y. Fu\",\"doi\":\"10.1016/j.pquantelec.2022.100398\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>The research on optical wireless communication (OWC) has been going on for more than two decades. Particularly, </span>visible light communication (VLC), as a means of OWC combining communication with illumination, has been regarded as a promising indoor high-speed wireless approach for short-distance access. Recently, lightwave, millimeter-wave (mmWave), terahertz (THz) and other spectrum mediums are considered as potential candidates for beyond fifth-generation/sixth-generation (B5G/6G) mobile communication networks. On the basis of previous studies, this review focuses on revealing how the research of next-generation OWC technology should be carried out to meet the requirements of B5G/6G for practical deployment. The research, development and engineering transformation of the OWC systems are a paragon of interdisciplinary. It involves a wide discussion on how to build a high-speed, multi-user, full-duplex, white-light OWC system based on existing technologies by showing the innovations and trade-offs at various levels with material, device, air-interface technology, system and network architecture. The compatibility of OWC is emphasized and some advanced heterogeneous OWC systems are presented, which involves the combination or integration of various functions such as sensing, near-infrared (NIR) beam-steering, positioning and coexistence with radio frequency (RF) communication. Finally, several potential directions are pointed out for the actual engineering deployment in the B5G/6G era.</p></div>\",\"PeriodicalId\":414,\"journal\":{\"name\":\"Progress in Quantum Electronics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Quantum Electronics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0079672722000246\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Quantum Electronics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079672722000246","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Evolution of optical wireless communication for B5G/6G
The research on optical wireless communication (OWC) has been going on for more than two decades. Particularly, visible light communication (VLC), as a means of OWC combining communication with illumination, has been regarded as a promising indoor high-speed wireless approach for short-distance access. Recently, lightwave, millimeter-wave (mmWave), terahertz (THz) and other spectrum mediums are considered as potential candidates for beyond fifth-generation/sixth-generation (B5G/6G) mobile communication networks. On the basis of previous studies, this review focuses on revealing how the research of next-generation OWC technology should be carried out to meet the requirements of B5G/6G for practical deployment. The research, development and engineering transformation of the OWC systems are a paragon of interdisciplinary. It involves a wide discussion on how to build a high-speed, multi-user, full-duplex, white-light OWC system based on existing technologies by showing the innovations and trade-offs at various levels with material, device, air-interface technology, system and network architecture. The compatibility of OWC is emphasized and some advanced heterogeneous OWC systems are presented, which involves the combination or integration of various functions such as sensing, near-infrared (NIR) beam-steering, positioning and coexistence with radio frequency (RF) communication. Finally, several potential directions are pointed out for the actual engineering deployment in the B5G/6G era.
期刊介绍:
Progress in Quantum Electronics, established in 1969, is an esteemed international review journal dedicated to sharing cutting-edge topics in quantum electronics and its applications. The journal disseminates papers covering theoretical and experimental aspects of contemporary research, including advances in physics, technology, and engineering relevant to quantum electronics. It also encourages interdisciplinary research, welcoming papers that contribute new knowledge in areas such as bio and nano-related work.