Suk-Ho Song, Jae-In Yoo, Hyo-Bin Kim, Sung-Cheon Kang, Kanghoon Kim, Sung-Jae Park, Qun Yan, Jang-Kun Song
{"title":"双发射层有机发光二极管中空穴和激子分布的操纵","authors":"Suk-Ho Song, Jae-In Yoo, Hyo-Bin Kim, Sung-Cheon Kang, Kanghoon Kim, Sung-Jae Park, Qun Yan, Jang-Kun Song","doi":"10.1007/s13391-023-00452-1","DOIUrl":null,"url":null,"abstract":"<div><p>The efficiency improvement of organic light-emitting diodes (OLEDs) is important but challenging. Here, we introduce a unique OLED with a hole modulation layer (HML) in the middle of its emission layer (EML). The external quantum efficiency and power efficiency can be improved by approximately 58% when an HML with optimized thickness is inserted. HML insertion can efficiently retard hole flow, thus improving (<i>i</i>) exciton distribution uniformity and (<i>ii</i>) local electron–hole charge balance. A systematic study of the individual contributions of two EMLs separated by the HML shows that the former factor dominantly works at low current densities (< 10 mA/cm<sup>2</sup>), whereas the latter factor functions over the entire current density range of the OLED. Therefore, the efficiency improvement is greatest at low current densities, which aligns with the typical operating range in display applications. The results provide a deeper understanding of the OLED emission mechanism, and the proposed OLED structure can significantly benefit high-performance OLED displays.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"20 3","pages":"232 - 242"},"PeriodicalIF":2.1000,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Manipulation of Hole and Exciton Distributions in Organic Light-Emitting Diodes with Dual Emission Layers\",\"authors\":\"Suk-Ho Song, Jae-In Yoo, Hyo-Bin Kim, Sung-Cheon Kang, Kanghoon Kim, Sung-Jae Park, Qun Yan, Jang-Kun Song\",\"doi\":\"10.1007/s13391-023-00452-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The efficiency improvement of organic light-emitting diodes (OLEDs) is important but challenging. Here, we introduce a unique OLED with a hole modulation layer (HML) in the middle of its emission layer (EML). The external quantum efficiency and power efficiency can be improved by approximately 58% when an HML with optimized thickness is inserted. HML insertion can efficiently retard hole flow, thus improving (<i>i</i>) exciton distribution uniformity and (<i>ii</i>) local electron–hole charge balance. A systematic study of the individual contributions of two EMLs separated by the HML shows that the former factor dominantly works at low current densities (< 10 mA/cm<sup>2</sup>), whereas the latter factor functions over the entire current density range of the OLED. Therefore, the efficiency improvement is greatest at low current densities, which aligns with the typical operating range in display applications. The results provide a deeper understanding of the OLED emission mechanism, and the proposed OLED structure can significantly benefit high-performance OLED displays.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":536,\"journal\":{\"name\":\"Electronic Materials Letters\",\"volume\":\"20 3\",\"pages\":\"232 - 242\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Materials Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13391-023-00452-1\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Materials Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s13391-023-00452-1","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Manipulation of Hole and Exciton Distributions in Organic Light-Emitting Diodes with Dual Emission Layers
The efficiency improvement of organic light-emitting diodes (OLEDs) is important but challenging. Here, we introduce a unique OLED with a hole modulation layer (HML) in the middle of its emission layer (EML). The external quantum efficiency and power efficiency can be improved by approximately 58% when an HML with optimized thickness is inserted. HML insertion can efficiently retard hole flow, thus improving (i) exciton distribution uniformity and (ii) local electron–hole charge balance. A systematic study of the individual contributions of two EMLs separated by the HML shows that the former factor dominantly works at low current densities (< 10 mA/cm2), whereas the latter factor functions over the entire current density range of the OLED. Therefore, the efficiency improvement is greatest at low current densities, which aligns with the typical operating range in display applications. The results provide a deeper understanding of the OLED emission mechanism, and the proposed OLED structure can significantly benefit high-performance OLED displays.
期刊介绍:
Electronic Materials Letters is an official journal of the Korean Institute of Metals and Materials. It is a peer-reviewed international journal publishing print and online version. It covers all disciplines of research and technology in electronic materials. Emphasis is placed on science, engineering and applications of advanced materials, including electronic, magnetic, optical, organic, electrochemical, mechanical, and nanoscale materials. The aspects of synthesis and processing include thin films, nanostructures, self assembly, and bulk, all related to thermodynamics, kinetics and/or modeling.