Eric Cicero, K. Poinar, R. Jones-Ivey, A. Petty, Jeanette M. Sperhac, A. Patra, J. Briner
{"title":"冷杉含水层的水排入格陵兰岛东南部的决口","authors":"Eric Cicero, K. Poinar, R. Jones-Ivey, A. Petty, Jeanette M. Sperhac, A. Patra, J. Briner","doi":"10.1017/jog.2023.25","DOIUrl":null,"url":null,"abstract":"\n In Southeast Greenland, summer melt and high winter snowfall rates give rise to firn aquifers: vast stores of meltwater buried beneath the ice-sheet surface. Previous detailed studies of a single Greenland firn aquifer site suggest that the water drains into crevasses, but this is not known at a regional scale. We develop and use a tool in Ghub, an online gateway of shared datasets, tools and supercomputing resources for glaciology, to identify crevasses from elevation data collected by NASA's Airborne Topographic Mapper across 29000 km2 of Southeast Greenland. We find crevasses within 3 km of the previously mapped downglacier boundary of the firn aquifer at 20 of 25 flightline crossings. Our data suggest that crevasses widen until they reach the downglacier boundary of the firn aquifer, implying that crevasses collect firn-aquifer water, but we did not find this trend with statistical significance. The median crevasse width, 27 meters, implies an aspect ratio consistent with the crevasses reaching the bed. Our results support the idea that most water in Southeast Greenland firn aquifers drains through crevasses. Less common fates are discharge at the ice-sheet surface (3 of 25 sites) and refreezing at the aquifer bottom (1 of 25 sites).","PeriodicalId":15981,"journal":{"name":"Journal of Glaciology","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Firn aquifer water discharges into crevasses across Southeast Greenland\",\"authors\":\"Eric Cicero, K. Poinar, R. Jones-Ivey, A. Petty, Jeanette M. Sperhac, A. Patra, J. Briner\",\"doi\":\"10.1017/jog.2023.25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In Southeast Greenland, summer melt and high winter snowfall rates give rise to firn aquifers: vast stores of meltwater buried beneath the ice-sheet surface. Previous detailed studies of a single Greenland firn aquifer site suggest that the water drains into crevasses, but this is not known at a regional scale. We develop and use a tool in Ghub, an online gateway of shared datasets, tools and supercomputing resources for glaciology, to identify crevasses from elevation data collected by NASA's Airborne Topographic Mapper across 29000 km2 of Southeast Greenland. We find crevasses within 3 km of the previously mapped downglacier boundary of the firn aquifer at 20 of 25 flightline crossings. Our data suggest that crevasses widen until they reach the downglacier boundary of the firn aquifer, implying that crevasses collect firn-aquifer water, but we did not find this trend with statistical significance. The median crevasse width, 27 meters, implies an aspect ratio consistent with the crevasses reaching the bed. Our results support the idea that most water in Southeast Greenland firn aquifers drains through crevasses. Less common fates are discharge at the ice-sheet surface (3 of 25 sites) and refreezing at the aquifer bottom (1 of 25 sites).\",\"PeriodicalId\":15981,\"journal\":{\"name\":\"Journal of Glaciology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Glaciology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1017/jog.2023.25\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Glaciology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1017/jog.2023.25","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
Firn aquifer water discharges into crevasses across Southeast Greenland
In Southeast Greenland, summer melt and high winter snowfall rates give rise to firn aquifers: vast stores of meltwater buried beneath the ice-sheet surface. Previous detailed studies of a single Greenland firn aquifer site suggest that the water drains into crevasses, but this is not known at a regional scale. We develop and use a tool in Ghub, an online gateway of shared datasets, tools and supercomputing resources for glaciology, to identify crevasses from elevation data collected by NASA's Airborne Topographic Mapper across 29000 km2 of Southeast Greenland. We find crevasses within 3 km of the previously mapped downglacier boundary of the firn aquifer at 20 of 25 flightline crossings. Our data suggest that crevasses widen until they reach the downglacier boundary of the firn aquifer, implying that crevasses collect firn-aquifer water, but we did not find this trend with statistical significance. The median crevasse width, 27 meters, implies an aspect ratio consistent with the crevasses reaching the bed. Our results support the idea that most water in Southeast Greenland firn aquifers drains through crevasses. Less common fates are discharge at the ice-sheet surface (3 of 25 sites) and refreezing at the aquifer bottom (1 of 25 sites).
期刊介绍:
Journal of Glaciology publishes original scientific articles and letters in any aspect of glaciology- the study of ice. Studies of natural, artificial, and extraterrestrial ice and snow, as well as interactions between ice, snow and the atmospheric, oceanic and subglacial environment are all eligible. They may be based on field work, remote sensing, laboratory investigations, theoretical analysis or numerical modelling, or may report on newly developed glaciological instruments. Subjects covered recently in the Journal have included palaeoclimatology and the chemistry of the atmosphere as revealed in ice cores; theoretical and applied physics and chemistry of ice; the dynamics of glaciers and ice sheets, and changes in their extent and mass under climatic forcing; glacier energy balances at all scales; glacial landforms, and glaciers as geomorphic agents; snow science in all its aspects; ice as a host for surface and subglacial ecosystems; sea ice, icebergs and lake ice; and avalanche dynamics and other glacial hazards to human activity. Studies of permafrost and of ice in the Earth’s atmosphere are also within the domain of the Journal, as are interdisciplinary applications to engineering, biological, and social sciences, and studies in the history of glaciology.