{"title":"具有时滞和声学边界条件的对数粘弹性方程的Blow-up","authors":"Sun‐Hye Park","doi":"10.1515/anona-2022-0310","DOIUrl":null,"url":null,"abstract":"Abstract In the present work, we establish a blow-up criterion for viscoelastic wave equations with nonlinear damping, logarithmic source, delay in the velocity, and acoustic boundary conditions. Due to the nonlinear damping term, we cannot apply the concavity method introduced by Levine. Thus, we use the energy method to show that the solution with negative initial energy blows up after finite time. Furthermore, we investigate the upper and lower bounds of the blow-up time.","PeriodicalId":51301,"journal":{"name":"Advances in Nonlinear Analysis","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Blow-up for logarithmic viscoelastic equations with delay and acoustic boundary conditions\",\"authors\":\"Sun‐Hye Park\",\"doi\":\"10.1515/anona-2022-0310\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In the present work, we establish a blow-up criterion for viscoelastic wave equations with nonlinear damping, logarithmic source, delay in the velocity, and acoustic boundary conditions. Due to the nonlinear damping term, we cannot apply the concavity method introduced by Levine. Thus, we use the energy method to show that the solution with negative initial energy blows up after finite time. Furthermore, we investigate the upper and lower bounds of the blow-up time.\",\"PeriodicalId\":51301,\"journal\":{\"name\":\"Advances in Nonlinear Analysis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Nonlinear Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/anona-2022-0310\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Nonlinear Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2022-0310","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Blow-up for logarithmic viscoelastic equations with delay and acoustic boundary conditions
Abstract In the present work, we establish a blow-up criterion for viscoelastic wave equations with nonlinear damping, logarithmic source, delay in the velocity, and acoustic boundary conditions. Due to the nonlinear damping term, we cannot apply the concavity method introduced by Levine. Thus, we use the energy method to show that the solution with negative initial energy blows up after finite time. Furthermore, we investigate the upper and lower bounds of the blow-up time.
期刊介绍:
Advances in Nonlinear Analysis (ANONA) aims to publish selected research contributions devoted to nonlinear problems coming from different areas, with particular reference to those introducing new techniques capable of solving a wide range of problems. The Journal focuses on papers that address significant problems in pure and applied nonlinear analysis. ANONA seeks to present the most significant advances in this field to a wide readership, including researchers and graduate students in mathematics, physics, and engineering.