凿岩机变工况下基于域自适应的故障诊断

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2023-07-23 DOI:10.36001/ijphm.2023.v14i2.3425
Yong Chae Kim, Taehun Kim, J. U. Ko, Jinwook Lee, Keon Kim
{"title":"凿岩机变工况下基于域自适应的故障诊断","authors":"Yong Chae Kim, Taehun Kim, J. U. Ko, Jinwook Lee, Keon Kim","doi":"10.36001/ijphm.2023.v14i2.3425","DOIUrl":null,"url":null,"abstract":"Data-driven fault diagnosis is an essential technology for the safety and maintenance of rock drills. However, since the signals acquired from a rock drill have different distributions, which arise due to their variable operating conditions, the classification performance of any data-driven method is diminished; this is called the domain-shift issue. This paper proposes a new domain-adaptation-based fault diagnosis scheme to solve the domain-shift problem. The proposed method introduces a data-cropping technique to mitigate the difference in the length of the data measured from a rock drill for each impact cycle. To extract invariant features for all operating conditions, the proposed method combines two methods: a domain adversarial neural network and minimization of the maximum mean discrepancy (MMD) between the features from different domains. In addition, a soft voting ensemble is used to reduce the model uncertainty. The proposed method shows superior performance when validated with a rock drill dataset; the proposed approach was ranked in 2nd place in the 2022 PHM Conference Data Challenge.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Domain Adaptation based Fault Diagnosis under Variable Operating Conditions of a Rock Drill\",\"authors\":\"Yong Chae Kim, Taehun Kim, J. U. Ko, Jinwook Lee, Keon Kim\",\"doi\":\"10.36001/ijphm.2023.v14i2.3425\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data-driven fault diagnosis is an essential technology for the safety and maintenance of rock drills. However, since the signals acquired from a rock drill have different distributions, which arise due to their variable operating conditions, the classification performance of any data-driven method is diminished; this is called the domain-shift issue. This paper proposes a new domain-adaptation-based fault diagnosis scheme to solve the domain-shift problem. The proposed method introduces a data-cropping technique to mitigate the difference in the length of the data measured from a rock drill for each impact cycle. To extract invariant features for all operating conditions, the proposed method combines two methods: a domain adversarial neural network and minimization of the maximum mean discrepancy (MMD) between the features from different domains. In addition, a soft voting ensemble is used to reduce the model uncertainty. The proposed method shows superior performance when validated with a rock drill dataset; the proposed approach was ranked in 2nd place in the 2022 PHM Conference Data Challenge.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36001/ijphm.2023.v14i2.3425\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36001/ijphm.2023.v14i2.3425","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

数据驱动的故障诊断是保证凿岩机安全和维护的重要技术。然而,由于从凿岩机获取的信号具有不同的分布,这是由于其可变的操作条件而产生的,因此任何数据驱动方法的分类性能都会降低;这被称为领域转移问题。本文提出了一种新的基于域自适应的故障诊断方案来解决域偏移问题。所提出的方法引入了一种数据裁剪技术,以减轻每个冲击周期从凿岩机测量的数据长度的差异。为了提取所有操作条件下的不变特征,该方法结合了两种方法:领域对抗性神经网络和最小化不同领域特征之间的最大均值差异(MMD)。此外,还使用了软投票集合来减少模型的不确定性。当用凿岩机数据集进行验证时,所提出的方法显示出优越的性能;所提出的方法在2022 PHM会议数据挑战赛中排名第二。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Domain Adaptation based Fault Diagnosis under Variable Operating Conditions of a Rock Drill
Data-driven fault diagnosis is an essential technology for the safety and maintenance of rock drills. However, since the signals acquired from a rock drill have different distributions, which arise due to their variable operating conditions, the classification performance of any data-driven method is diminished; this is called the domain-shift issue. This paper proposes a new domain-adaptation-based fault diagnosis scheme to solve the domain-shift problem. The proposed method introduces a data-cropping technique to mitigate the difference in the length of the data measured from a rock drill for each impact cycle. To extract invariant features for all operating conditions, the proposed method combines two methods: a domain adversarial neural network and minimization of the maximum mean discrepancy (MMD) between the features from different domains. In addition, a soft voting ensemble is used to reduce the model uncertainty. The proposed method shows superior performance when validated with a rock drill dataset; the proposed approach was ranked in 2nd place in the 2022 PHM Conference Data Challenge.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1