基于加权融合和点向卷积的单眼图像深度估计方法

IF 1.5 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE IET Computer Vision Pub Date : 2023-06-14 DOI:10.1049/cvi2.12212
Chen Lei, Liang Zhengyou, Sun Yu
{"title":"基于加权融合和点向卷积的单眼图像深度估计方法","authors":"Chen Lei,&nbsp;Liang Zhengyou,&nbsp;Sun Yu","doi":"10.1049/cvi2.12212","DOIUrl":null,"url":null,"abstract":"<p>The existing monocular depth estimation methods based on deep learning have difficulty in estimating the depth near the edges of the objects in an image when the depth distance between these objects changes abruptly and decline in accuracy when an image has more noises. Furthermore, these methods consume more hardware resources because they have huge network parameters. To solve these problems, this paper proposes a depth estimation method based on weighted fusion and point-wise convolution. The authors design a maximum-average adaptive pooling weighted fusion module (MAWF) that fuses global features and local features and a continuous point-wise convolution module for processing the fused features derived from the (MAWF) module. The two modules work closely together for three times to perform weighted fusion and point-wise convolution of features of multi-scale from the encoder output, which can better decode the depth information of a scene. Experimental results show that our method achieves state-of-the-art performance on the KITTI dataset with <b><i>δ</i></b><sub>1</sub> up to 0.996 and the root mean square error metric down to 8% and has demonstrated the strong generalisation and robustness.</p>","PeriodicalId":56304,"journal":{"name":"IET Computer Vision","volume":"17 8","pages":"1005-1016"},"PeriodicalIF":1.5000,"publicationDate":"2023-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.12212","citationCount":"0","resultStr":"{\"title\":\"A monocular image depth estimation method based on weighted fusion and point-wise convolution\",\"authors\":\"Chen Lei,&nbsp;Liang Zhengyou,&nbsp;Sun Yu\",\"doi\":\"10.1049/cvi2.12212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The existing monocular depth estimation methods based on deep learning have difficulty in estimating the depth near the edges of the objects in an image when the depth distance between these objects changes abruptly and decline in accuracy when an image has more noises. Furthermore, these methods consume more hardware resources because they have huge network parameters. To solve these problems, this paper proposes a depth estimation method based on weighted fusion and point-wise convolution. The authors design a maximum-average adaptive pooling weighted fusion module (MAWF) that fuses global features and local features and a continuous point-wise convolution module for processing the fused features derived from the (MAWF) module. The two modules work closely together for three times to perform weighted fusion and point-wise convolution of features of multi-scale from the encoder output, which can better decode the depth information of a scene. Experimental results show that our method achieves state-of-the-art performance on the KITTI dataset with <b><i>δ</i></b><sub>1</sub> up to 0.996 and the root mean square error metric down to 8% and has demonstrated the strong generalisation and robustness.</p>\",\"PeriodicalId\":56304,\"journal\":{\"name\":\"IET Computer Vision\",\"volume\":\"17 8\",\"pages\":\"1005-1016\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.12212\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Computer Vision\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/cvi2.12212\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cvi2.12212","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

现有的基于深度学习的单目深度估算方法难以估算图像中物体边缘附近的深度,当这些物体之间的深度距离发生突然变化时,深度估算的准确性就会下降。此外,由于这些方法的网络参数巨大,因此会消耗更多的硬件资源。为了解决这些问题,本文提出了一种基于加权融合和点卷积的深度估计方法。作者设计了一个最大平均自适应池化加权融合模块(MAWF),用于融合全局特征和局部特征;还设计了一个连续点式卷积模块,用于处理从(MAWF)模块得到的融合特征。这两个模块三次紧密配合,对编码器输出的多尺度特征进行加权融合和点卷积,从而更好地解码场景的深度信息。实验结果表明,我们的方法在 KITTI 数据集上取得了最先进的性能,δ1 高达 0.996,均方根误差指标低至 8%,并表现出很强的泛化能力和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A monocular image depth estimation method based on weighted fusion and point-wise convolution

The existing monocular depth estimation methods based on deep learning have difficulty in estimating the depth near the edges of the objects in an image when the depth distance between these objects changes abruptly and decline in accuracy when an image has more noises. Furthermore, these methods consume more hardware resources because they have huge network parameters. To solve these problems, this paper proposes a depth estimation method based on weighted fusion and point-wise convolution. The authors design a maximum-average adaptive pooling weighted fusion module (MAWF) that fuses global features and local features and a continuous point-wise convolution module for processing the fused features derived from the (MAWF) module. The two modules work closely together for three times to perform weighted fusion and point-wise convolution of features of multi-scale from the encoder output, which can better decode the depth information of a scene. Experimental results show that our method achieves state-of-the-art performance on the KITTI dataset with δ1 up to 0.996 and the root mean square error metric down to 8% and has demonstrated the strong generalisation and robustness.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Computer Vision
IET Computer Vision 工程技术-工程:电子与电气
CiteScore
3.30
自引率
11.80%
发文量
76
审稿时长
3.4 months
期刊介绍: IET Computer Vision seeks original research papers in a wide range of areas of computer vision. The vision of the journal is to publish the highest quality research work that is relevant and topical to the field, but not forgetting those works that aim to introduce new horizons and set the agenda for future avenues of research in computer vision. IET Computer Vision welcomes submissions on the following topics: Biologically and perceptually motivated approaches to low level vision (feature detection, etc.); Perceptual grouping and organisation Representation, analysis and matching of 2D and 3D shape Shape-from-X Object recognition Image understanding Learning with visual inputs Motion analysis and object tracking Multiview scene analysis Cognitive approaches in low, mid and high level vision Control in visual systems Colour, reflectance and light Statistical and probabilistic models Face and gesture Surveillance Biometrics and security Robotics Vehicle guidance Automatic model aquisition Medical image analysis and understanding Aerial scene analysis and remote sensing Deep learning models in computer vision Both methodological and applications orientated papers are welcome. Manuscripts submitted are expected to include a detailed and analytical review of the literature and state-of-the-art exposition of the original proposed research and its methodology, its thorough experimental evaluation, and last but not least, comparative evaluation against relevant and state-of-the-art methods. Submissions not abiding by these minimum requirements may be returned to authors without being sent to review. Special Issues Current Call for Papers: Computer Vision for Smart Cameras and Camera Networks - https://digital-library.theiet.org/files/IET_CVI_SC.pdf Computer Vision for the Creative Industries - https://digital-library.theiet.org/files/IET_CVI_CVCI.pdf
期刊最新文献
SRL-ProtoNet: Self-supervised representation learning for few-shot remote sensing scene classification Balanced parametric body prior for implicit clothed human reconstruction from a monocular RGB Social-ATPGNN: Prediction of multi-modal pedestrian trajectory of non-homogeneous social interaction HIST: Hierarchical and sequential transformer for image captioning Multi-modal video search by examples—A video quality impact analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1