利用PTB7聚合物基空穴传输层提高生态友好型碘化铋银薄膜光伏的开路电压

IF 2.1 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Electronic Materials Letters Pub Date : 2023-05-19 DOI:10.1007/s13391-023-00437-0
Tae-Gyun Kwon, Taesu Kim, Younghoon Kim
{"title":"利用PTB7聚合物基空穴传输层提高生态友好型碘化铋银薄膜光伏的开路电压","authors":"Tae-Gyun Kwon,&nbsp;Taesu Kim,&nbsp;Younghoon Kim","doi":"10.1007/s13391-023-00437-0","DOIUrl":null,"url":null,"abstract":"<div><p>Next-generation and solution-processed thin-film solar cells have been attracted considerable attention because of their low cost, light weight, flexibility, and aesthetics. However, most of solution-processed thin-film solar cells are now focused on the use of photovoltaic absorbers containing the toxic element of Pb. In this study, eco-friendly silver-bismuth-iodide (Ag-Bi-I) thin-film photovoltaic devices with high open-circuit voltages (<i>V</i><sub>OC</sub>) are developed by utilizing polythieno[3,4-<i>b</i>]-thiophene-co-benzodithiophene (PTB7) as the hole transport layer (HTL). The solution-processed AgBi<sub>2</sub>I<sub>7</sub> semiconductor, which is an Ag-Bi-I ternary compound, exhibit features suitable for photovoltaic layers in thin-film solar cells, including a three-dimensional (3D) crystal structure, good surface morphology, and low optical bandgaps of 1.87 eV. Meanwhile, the solution-processed AgBi<sub>2</sub>I<sub>7</sub> thin-film solar cell based on the PTB7 HTL exhibit a power conversion efficiency of 0.94% with an improved <i>V</i><sub>OC</sub> value of 0.71 V owing to the deeper highest occupied molecular orbital (HOMO) energy level compared to that of poly(3-hexylthiophene-2,5-diyl) (P3HT). In other words, the <i>V</i><sub>OC</sub> of the PTB7 HTL-based device is 20% higher than that of the P3HT HTL-based control device. Our results provide a new approach for increasing the <i>V</i><sub>OC</sub> of eco-friendly Ag-Bi-I thin-film photovoltaics and indicate that further HTL engineering is necessary to simultaneously improve the <i>V</i><sub>OC</sub> and performance of the devices.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"20 2","pages":"165 - 172"},"PeriodicalIF":2.1000,"publicationDate":"2023-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced Open-Circuit Voltage of Eco-Friendly Silver Bismuth Iodide Thin-Film Photovoltaics with PTB7 Polymer-Based Hole Transport Layer\",\"authors\":\"Tae-Gyun Kwon,&nbsp;Taesu Kim,&nbsp;Younghoon Kim\",\"doi\":\"10.1007/s13391-023-00437-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Next-generation and solution-processed thin-film solar cells have been attracted considerable attention because of their low cost, light weight, flexibility, and aesthetics. However, most of solution-processed thin-film solar cells are now focused on the use of photovoltaic absorbers containing the toxic element of Pb. In this study, eco-friendly silver-bismuth-iodide (Ag-Bi-I) thin-film photovoltaic devices with high open-circuit voltages (<i>V</i><sub>OC</sub>) are developed by utilizing polythieno[3,4-<i>b</i>]-thiophene-co-benzodithiophene (PTB7) as the hole transport layer (HTL). The solution-processed AgBi<sub>2</sub>I<sub>7</sub> semiconductor, which is an Ag-Bi-I ternary compound, exhibit features suitable for photovoltaic layers in thin-film solar cells, including a three-dimensional (3D) crystal structure, good surface morphology, and low optical bandgaps of 1.87 eV. Meanwhile, the solution-processed AgBi<sub>2</sub>I<sub>7</sub> thin-film solar cell based on the PTB7 HTL exhibit a power conversion efficiency of 0.94% with an improved <i>V</i><sub>OC</sub> value of 0.71 V owing to the deeper highest occupied molecular orbital (HOMO) energy level compared to that of poly(3-hexylthiophene-2,5-diyl) (P3HT). In other words, the <i>V</i><sub>OC</sub> of the PTB7 HTL-based device is 20% higher than that of the P3HT HTL-based control device. Our results provide a new approach for increasing the <i>V</i><sub>OC</sub> of eco-friendly Ag-Bi-I thin-film photovoltaics and indicate that further HTL engineering is necessary to simultaneously improve the <i>V</i><sub>OC</sub> and performance of the devices.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":536,\"journal\":{\"name\":\"Electronic Materials Letters\",\"volume\":\"20 2\",\"pages\":\"165 - 172\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Materials Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13391-023-00437-0\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Materials Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s13391-023-00437-0","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

下一代溶液处理薄膜太阳能电池因其成本低、重量轻、灵活性强和美观而备受关注。然而,目前大多数溶液法薄膜太阳能电池都侧重于使用含有有毒元素铅的光伏吸收剂。在这项研究中,利用聚噻吩并[3,4-b]噻吩-共苯并二噻吩(PTB7)作为空穴传输层(HTL),开发出了具有高开路电压(VOC)的环保型银铋碘(Ag-Bi-I)薄膜光伏器件。溶液加工的 AgBi2I7 半导体是一种 Ag-Bi-I 三元化合物,具有适合薄膜太阳能电池光电层的特性,包括三维(3D)晶体结构、良好的表面形貌和 1.87 eV 的低光带隙。同时,与聚(3-己基噻吩-2,5-二基)(P3HT)相比,基于PTB7 HTL的溶液加工AgBi2I7薄膜太阳能电池具有更深的最高占据分子轨道(HOMO)能级,其功率转换效率达到0.94%,VOC值提高到0.71 V。换句话说,基于 PTB7 HTL 的器件的 VOC 比基于 P3HT HTL 的控制器件高 20%。我们的研究结果为提高环保型银-铋-I 薄膜光伏器件的挥发性有机化合物提供了一种新方法,并表明有必要进一步开展 HTL 工程,以同时提高器件的挥发性有机化合物和性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhanced Open-Circuit Voltage of Eco-Friendly Silver Bismuth Iodide Thin-Film Photovoltaics with PTB7 Polymer-Based Hole Transport Layer

Next-generation and solution-processed thin-film solar cells have been attracted considerable attention because of their low cost, light weight, flexibility, and aesthetics. However, most of solution-processed thin-film solar cells are now focused on the use of photovoltaic absorbers containing the toxic element of Pb. In this study, eco-friendly silver-bismuth-iodide (Ag-Bi-I) thin-film photovoltaic devices with high open-circuit voltages (VOC) are developed by utilizing polythieno[3,4-b]-thiophene-co-benzodithiophene (PTB7) as the hole transport layer (HTL). The solution-processed AgBi2I7 semiconductor, which is an Ag-Bi-I ternary compound, exhibit features suitable for photovoltaic layers in thin-film solar cells, including a three-dimensional (3D) crystal structure, good surface morphology, and low optical bandgaps of 1.87 eV. Meanwhile, the solution-processed AgBi2I7 thin-film solar cell based on the PTB7 HTL exhibit a power conversion efficiency of 0.94% with an improved VOC value of 0.71 V owing to the deeper highest occupied molecular orbital (HOMO) energy level compared to that of poly(3-hexylthiophene-2,5-diyl) (P3HT). In other words, the VOC of the PTB7 HTL-based device is 20% higher than that of the P3HT HTL-based control device. Our results provide a new approach for increasing the VOC of eco-friendly Ag-Bi-I thin-film photovoltaics and indicate that further HTL engineering is necessary to simultaneously improve the VOC and performance of the devices.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronic Materials Letters
Electronic Materials Letters 工程技术-材料科学:综合
CiteScore
4.70
自引率
20.80%
发文量
52
审稿时长
2.3 months
期刊介绍: Electronic Materials Letters is an official journal of the Korean Institute of Metals and Materials. It is a peer-reviewed international journal publishing print and online version. It covers all disciplines of research and technology in electronic materials. Emphasis is placed on science, engineering and applications of advanced materials, including electronic, magnetic, optical, organic, electrochemical, mechanical, and nanoscale materials. The aspects of synthesis and processing include thin films, nanostructures, self assembly, and bulk, all related to thermodynamics, kinetics and/or modeling.
期刊最新文献
Impact of Crystal Domain on Electrical Performance and Bending Durability of Flexible Organic Thin-Film Transistors with diF-TES-ADT Semiconductor All-Cobalt-Free Layered/Olivine Mixed Cathode Material for High-Electrode Density and Enhanced Cycle-Life Performance High-speed and Sub-ppm Detectable Tellurene NO2 Chemiresistive Room-Temperature Sensor under Humidity Environments A Neural Network Approach for Health State Estimation of Lithium-Ion Batteries Incorporating Physics Knowledge Enhanced Magnetic Permeability Through Improved Packing Density for Thin-Film Type Power Inductors for High-Frequency Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1