微通道中的流体流动和混合及其微流体应用的设计和制造综述

Q3 Engineering Micro and Nanosystems Pub Date : 2023-08-17 DOI:10.2174/1876402915666230817164516
P. Sarma, P. K. Patowari
{"title":"微通道中的流体流动和混合及其微流体应用的设计和制造综述","authors":"P. Sarma, P. K. Patowari","doi":"10.2174/1876402915666230817164516","DOIUrl":null,"url":null,"abstract":"\n\nThe present time has witnessed a never-before-heard interest in and applications of microfluidic devices and systems. In microfluidic systems, fluid flows and is manipulated in microchannels. Mixing is one of the most important criteria for a majority of microfluidic systems, whose laminar nature hinders the efficiency of micromixing. The interface between the flowing fluid and the inner wall surface of the microchannel greatly influences the behaviour of fluidic flow in microfluidics. Many researchers have tried to pattern the surface, introduce obstacles to flow, and include micro- or nano-protruded structures to enhance the mixing efficiency by manipulating the microchannel flow. New and rapid advances in MEMS and micro/nanofabrication technologies have enabled researchers to experiment with increasingly complex designs, enabling rapid transformation and dissemination of new knowledge in the field of microfluidics. Here, we report the fluid flow characteristics, mixing, and associated phenomena about microfluidic systems. Microfluidic systems and components such as microreactors, micromixers, and microchannels are reviewed in this work. We review active and passive micromixers, with a primary focus on widely used passive micromixers. Various microchannel geometries and their features, mixing efficiencies, numerical analysis, and fabrication methods are reviewed. Applications as well as possible future trends and advancements in this field, are included too. It is expected to make the reader curious and more familiar with the interesting field of microfluidics.\n","PeriodicalId":18543,"journal":{"name":"Micro and Nanosystems","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A review on fluid flow and mixing in microchannel and their design and manufacture for microfluidic applications\",\"authors\":\"P. Sarma, P. K. Patowari\",\"doi\":\"10.2174/1876402915666230817164516\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\nThe present time has witnessed a never-before-heard interest in and applications of microfluidic devices and systems. In microfluidic systems, fluid flows and is manipulated in microchannels. Mixing is one of the most important criteria for a majority of microfluidic systems, whose laminar nature hinders the efficiency of micromixing. The interface between the flowing fluid and the inner wall surface of the microchannel greatly influences the behaviour of fluidic flow in microfluidics. Many researchers have tried to pattern the surface, introduce obstacles to flow, and include micro- or nano-protruded structures to enhance the mixing efficiency by manipulating the microchannel flow. New and rapid advances in MEMS and micro/nanofabrication technologies have enabled researchers to experiment with increasingly complex designs, enabling rapid transformation and dissemination of new knowledge in the field of microfluidics. Here, we report the fluid flow characteristics, mixing, and associated phenomena about microfluidic systems. Microfluidic systems and components such as microreactors, micromixers, and microchannels are reviewed in this work. We review active and passive micromixers, with a primary focus on widely used passive micromixers. Various microchannel geometries and their features, mixing efficiencies, numerical analysis, and fabrication methods are reviewed. Applications as well as possible future trends and advancements in this field, are included too. It is expected to make the reader curious and more familiar with the interesting field of microfluidics.\\n\",\"PeriodicalId\":18543,\"journal\":{\"name\":\"Micro and Nanosystems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micro and Nanosystems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/1876402915666230817164516\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nanosystems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1876402915666230817164516","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

目前,人们对微流体设备和系统的兴趣和应用前所未有。在微流体系统中,流体在微通道中流动并被操纵。混合是大多数微流体系统最重要的标准之一,其层流性质阻碍了微混合的效率。流动流体与微通道内壁表面之间的界面极大地影响微流体中流体流动的行为。许多研究人员试图对表面进行构图,为流动引入障碍物,并包括微或纳米突出结构,以通过操纵微通道流动来提高混合效率。MEMS和微/纳米制造技术的新的快速进步使研究人员能够对越来越复杂的设计进行实验,从而实现微流体领域新知识的快速转化和传播。在此,我们报道了微流体系统的流体流动特性、混合和相关现象。本文综述了微流体系统和部件,如微反应器、微混合器和微通道。我们回顾了有源和无源微混频器,主要关注广泛使用的无源微混频器。综述了各种微通道的几何形状及其特征、混合效率、数值分析和制造方法。还包括该领域的应用以及未来可能的趋势和进步。它有望让读者对微流体这一有趣的领域感到好奇和熟悉。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A review on fluid flow and mixing in microchannel and their design and manufacture for microfluidic applications
The present time has witnessed a never-before-heard interest in and applications of microfluidic devices and systems. In microfluidic systems, fluid flows and is manipulated in microchannels. Mixing is one of the most important criteria for a majority of microfluidic systems, whose laminar nature hinders the efficiency of micromixing. The interface between the flowing fluid and the inner wall surface of the microchannel greatly influences the behaviour of fluidic flow in microfluidics. Many researchers have tried to pattern the surface, introduce obstacles to flow, and include micro- or nano-protruded structures to enhance the mixing efficiency by manipulating the microchannel flow. New and rapid advances in MEMS and micro/nanofabrication technologies have enabled researchers to experiment with increasingly complex designs, enabling rapid transformation and dissemination of new knowledge in the field of microfluidics. Here, we report the fluid flow characteristics, mixing, and associated phenomena about microfluidic systems. Microfluidic systems and components such as microreactors, micromixers, and microchannels are reviewed in this work. We review active and passive micromixers, with a primary focus on widely used passive micromixers. Various microchannel geometries and their features, mixing efficiencies, numerical analysis, and fabrication methods are reviewed. Applications as well as possible future trends and advancements in this field, are included too. It is expected to make the reader curious and more familiar with the interesting field of microfluidics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Micro and Nanosystems
Micro and Nanosystems Engineering-Building and Construction
CiteScore
1.60
自引率
0.00%
发文量
50
期刊最新文献
Release Kinetics of Sulfentrazone from Chitosan Clay Sulfentrazone Nanocomposite Polythiophene/Copper Vanadate Nanoribbons and their Electrochemical Sensing Properties for Detecting Benzoic Acid Pharmaceutical Applications and Advances with Zetasizer: An Essential Analytical Tool for Size and Zeta Potential Analysis Global RC Interconnects with ADL Buffers for Low-Power Applications Transethosomal Carrier of Curcumin for Improved Topical Delivery: Optimization, In-vitro and Stability Assessment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1