基于Haar小波的网格分辨率适应快速有限体积建模的gpu并行化:在浅水流中的应用

IF 2.2 3区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Journal of Hydroinformatics Pub Date : 2023-06-16 DOI:10.2166/hydro.2023.154
Alovya Ahmed Chowdhury, G. Kesserwani, C. Rougé, P. Richmond
{"title":"基于Haar小波的网格分辨率适应快速有限体积建模的gpu并行化:在浅水流中的应用","authors":"Alovya Ahmed Chowdhury, G. Kesserwani, C. Rougé, P. Richmond","doi":"10.2166/hydro.2023.154","DOIUrl":null,"url":null,"abstract":"\n Wavelet-based grid resolution adaptation driven by the ‘multiresolution analysis’ (MRA) of the Haar wavelet (HW) allows to devise an adaptive first-order finite volume (FV1) model (HWFV1) that can readily preserve the modelling fidelity of its reference uniform-grid FV1 counterpart. However, the MRA entails an enormous computational effort as it involves ‘encoding’ (coarsening), ‘decoding’ (refining), analysing and traversing modelled data across a deep hierarchy of nested, uniform grids. GPU-parallelisation of the MRA is needed to handle its computational effort, but its algorithmic structure (1) hinders coalesced memory access on the GPU and (2) involves an inherently sequential tree traversal problem. This work redesigns the algorithmic structure of the MRA in order to parallelise it on the GPU, addressing (1) by applying Z-order space-filling curves and (2) by adopting a parallel tree traversal algorithm. This results in a GPU-parallelised HWFV1 model (GPU-HWFV1). GPU-HWFV1 is verified against its CPU predecessor (CPU-HWFV1) and its GPU-parallelised reference uniform-grid counterpart (GPU-FV1) over five shallow water flow test cases. GPU-HWFV1 preserves the modelling fidelity of GPU-FV1 while being up to 30 times faster. Compared to CPU-HWFV1, it is up to 200 times faster, suggesting that the GPU-parallelised MRA could be used to speed up other FV1 models.","PeriodicalId":54801,"journal":{"name":"Journal of Hydroinformatics","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GPU-parallelisation of Haar wavelet-based grid resolution adaptation for fast finite volume modelling: application to shallow water flows\",\"authors\":\"Alovya Ahmed Chowdhury, G. Kesserwani, C. Rougé, P. Richmond\",\"doi\":\"10.2166/hydro.2023.154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Wavelet-based grid resolution adaptation driven by the ‘multiresolution analysis’ (MRA) of the Haar wavelet (HW) allows to devise an adaptive first-order finite volume (FV1) model (HWFV1) that can readily preserve the modelling fidelity of its reference uniform-grid FV1 counterpart. However, the MRA entails an enormous computational effort as it involves ‘encoding’ (coarsening), ‘decoding’ (refining), analysing and traversing modelled data across a deep hierarchy of nested, uniform grids. GPU-parallelisation of the MRA is needed to handle its computational effort, but its algorithmic structure (1) hinders coalesced memory access on the GPU and (2) involves an inherently sequential tree traversal problem. This work redesigns the algorithmic structure of the MRA in order to parallelise it on the GPU, addressing (1) by applying Z-order space-filling curves and (2) by adopting a parallel tree traversal algorithm. This results in a GPU-parallelised HWFV1 model (GPU-HWFV1). GPU-HWFV1 is verified against its CPU predecessor (CPU-HWFV1) and its GPU-parallelised reference uniform-grid counterpart (GPU-FV1) over five shallow water flow test cases. GPU-HWFV1 preserves the modelling fidelity of GPU-FV1 while being up to 30 times faster. Compared to CPU-HWFV1, it is up to 200 times faster, suggesting that the GPU-parallelised MRA could be used to speed up other FV1 models.\",\"PeriodicalId\":54801,\"journal\":{\"name\":\"Journal of Hydroinformatics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydroinformatics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2166/hydro.2023.154\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydroinformatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2166/hydro.2023.154","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

由Haar小波(HW)的“多分辨率分析”(MRA)驱动的基于小波的网格分辨率自适应允许设计自适应一阶有限体积(FV1)模型(HWFV1),该模型可以容易地保持其参考均匀网格FV1对应物的建模保真度。然而,MRA需要巨大的计算工作量,因为它涉及“编码”(粗化)、“解码”(细化)、分析和遍历嵌套、统一网格的深层结构中的建模数据。MRA的GPU并行化需要处理其计算工作,但其算法结构(1)阻碍了GPU上的联合存储器访问,(2)涉及固有的顺序树遍历问题。本文重新设计了MRA的算法结构,以使其在GPU上并行,解决了(1)应用Z阶空间填充曲线和(2)采用并行树遍历算法。这产生了GPU并行化的HWFV1模型(GPU-HWFV1)。GPU-HWFV1在五个浅水流测试案例中与其CPU前身(CPUHWFV1)及其GPU并行参考均匀网格对应物(GPU-FV1)进行了验证。GPU-HWFV1保持了GPU-FV1的建模保真度,同时速度高达30倍。与CPUHWFV1相比,它的速度高达200倍,这表明GPU并行化MRA可以用于加快其他FV1模型的速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GPU-parallelisation of Haar wavelet-based grid resolution adaptation for fast finite volume modelling: application to shallow water flows
Wavelet-based grid resolution adaptation driven by the ‘multiresolution analysis’ (MRA) of the Haar wavelet (HW) allows to devise an adaptive first-order finite volume (FV1) model (HWFV1) that can readily preserve the modelling fidelity of its reference uniform-grid FV1 counterpart. However, the MRA entails an enormous computational effort as it involves ‘encoding’ (coarsening), ‘decoding’ (refining), analysing and traversing modelled data across a deep hierarchy of nested, uniform grids. GPU-parallelisation of the MRA is needed to handle its computational effort, but its algorithmic structure (1) hinders coalesced memory access on the GPU and (2) involves an inherently sequential tree traversal problem. This work redesigns the algorithmic structure of the MRA in order to parallelise it on the GPU, addressing (1) by applying Z-order space-filling curves and (2) by adopting a parallel tree traversal algorithm. This results in a GPU-parallelised HWFV1 model (GPU-HWFV1). GPU-HWFV1 is verified against its CPU predecessor (CPU-HWFV1) and its GPU-parallelised reference uniform-grid counterpart (GPU-FV1) over five shallow water flow test cases. GPU-HWFV1 preserves the modelling fidelity of GPU-FV1 while being up to 30 times faster. Compared to CPU-HWFV1, it is up to 200 times faster, suggesting that the GPU-parallelised MRA could be used to speed up other FV1 models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Hydroinformatics
Journal of Hydroinformatics 工程技术-工程:土木
CiteScore
4.80
自引率
3.70%
发文量
59
审稿时长
3 months
期刊介绍: Journal of Hydroinformatics is a peer-reviewed journal devoted to the application of information technology in the widest sense to problems of the aquatic environment. It promotes Hydroinformatics as a cross-disciplinary field of study, combining technological, human-sociological and more general environmental interests, including an ethical perspective.
期刊最新文献
A genetic algorithm's novel rainfall distribution method for optimized hydrological modeling at basin scales Accelerating regional-scale groundwater flow simulations with a hybrid deep neural network model incorporating mixed input types: A case study of the northeast Qatar aquifer Advancing rapid urban flood prediction: a spatiotemporal deep learning approach with uneven rainfall and attention mechanism A parallel multi-objective optimization based on adaptive surrogate model for combined operation of multiple hydraulic facilities in water diversion project Long-term inflow forecast using meteorological data based on long short-term memory neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1