Alovya Ahmed Chowdhury, G. Kesserwani, C. Rougé, P. Richmond
{"title":"基于Haar小波的网格分辨率适应快速有限体积建模的gpu并行化:在浅水流中的应用","authors":"Alovya Ahmed Chowdhury, G. Kesserwani, C. Rougé, P. Richmond","doi":"10.2166/hydro.2023.154","DOIUrl":null,"url":null,"abstract":"\n Wavelet-based grid resolution adaptation driven by the ‘multiresolution analysis’ (MRA) of the Haar wavelet (HW) allows to devise an adaptive first-order finite volume (FV1) model (HWFV1) that can readily preserve the modelling fidelity of its reference uniform-grid FV1 counterpart. However, the MRA entails an enormous computational effort as it involves ‘encoding’ (coarsening), ‘decoding’ (refining), analysing and traversing modelled data across a deep hierarchy of nested, uniform grids. GPU-parallelisation of the MRA is needed to handle its computational effort, but its algorithmic structure (1) hinders coalesced memory access on the GPU and (2) involves an inherently sequential tree traversal problem. This work redesigns the algorithmic structure of the MRA in order to parallelise it on the GPU, addressing (1) by applying Z-order space-filling curves and (2) by adopting a parallel tree traversal algorithm. This results in a GPU-parallelised HWFV1 model (GPU-HWFV1). GPU-HWFV1 is verified against its CPU predecessor (CPU-HWFV1) and its GPU-parallelised reference uniform-grid counterpart (GPU-FV1) over five shallow water flow test cases. GPU-HWFV1 preserves the modelling fidelity of GPU-FV1 while being up to 30 times faster. Compared to CPU-HWFV1, it is up to 200 times faster, suggesting that the GPU-parallelised MRA could be used to speed up other FV1 models.","PeriodicalId":54801,"journal":{"name":"Journal of Hydroinformatics","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GPU-parallelisation of Haar wavelet-based grid resolution adaptation for fast finite volume modelling: application to shallow water flows\",\"authors\":\"Alovya Ahmed Chowdhury, G. Kesserwani, C. Rougé, P. Richmond\",\"doi\":\"10.2166/hydro.2023.154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Wavelet-based grid resolution adaptation driven by the ‘multiresolution analysis’ (MRA) of the Haar wavelet (HW) allows to devise an adaptive first-order finite volume (FV1) model (HWFV1) that can readily preserve the modelling fidelity of its reference uniform-grid FV1 counterpart. However, the MRA entails an enormous computational effort as it involves ‘encoding’ (coarsening), ‘decoding’ (refining), analysing and traversing modelled data across a deep hierarchy of nested, uniform grids. GPU-parallelisation of the MRA is needed to handle its computational effort, but its algorithmic structure (1) hinders coalesced memory access on the GPU and (2) involves an inherently sequential tree traversal problem. This work redesigns the algorithmic structure of the MRA in order to parallelise it on the GPU, addressing (1) by applying Z-order space-filling curves and (2) by adopting a parallel tree traversal algorithm. This results in a GPU-parallelised HWFV1 model (GPU-HWFV1). GPU-HWFV1 is verified against its CPU predecessor (CPU-HWFV1) and its GPU-parallelised reference uniform-grid counterpart (GPU-FV1) over five shallow water flow test cases. GPU-HWFV1 preserves the modelling fidelity of GPU-FV1 while being up to 30 times faster. Compared to CPU-HWFV1, it is up to 200 times faster, suggesting that the GPU-parallelised MRA could be used to speed up other FV1 models.\",\"PeriodicalId\":54801,\"journal\":{\"name\":\"Journal of Hydroinformatics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydroinformatics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2166/hydro.2023.154\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydroinformatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2166/hydro.2023.154","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
GPU-parallelisation of Haar wavelet-based grid resolution adaptation for fast finite volume modelling: application to shallow water flows
Wavelet-based grid resolution adaptation driven by the ‘multiresolution analysis’ (MRA) of the Haar wavelet (HW) allows to devise an adaptive first-order finite volume (FV1) model (HWFV1) that can readily preserve the modelling fidelity of its reference uniform-grid FV1 counterpart. However, the MRA entails an enormous computational effort as it involves ‘encoding’ (coarsening), ‘decoding’ (refining), analysing and traversing modelled data across a deep hierarchy of nested, uniform grids. GPU-parallelisation of the MRA is needed to handle its computational effort, but its algorithmic structure (1) hinders coalesced memory access on the GPU and (2) involves an inherently sequential tree traversal problem. This work redesigns the algorithmic structure of the MRA in order to parallelise it on the GPU, addressing (1) by applying Z-order space-filling curves and (2) by adopting a parallel tree traversal algorithm. This results in a GPU-parallelised HWFV1 model (GPU-HWFV1). GPU-HWFV1 is verified against its CPU predecessor (CPU-HWFV1) and its GPU-parallelised reference uniform-grid counterpart (GPU-FV1) over five shallow water flow test cases. GPU-HWFV1 preserves the modelling fidelity of GPU-FV1 while being up to 30 times faster. Compared to CPU-HWFV1, it is up to 200 times faster, suggesting that the GPU-parallelised MRA could be used to speed up other FV1 models.
期刊介绍:
Journal of Hydroinformatics is a peer-reviewed journal devoted to the application of information technology in the widest sense to problems of the aquatic environment. It promotes Hydroinformatics as a cross-disciplinary field of study, combining technological, human-sociological and more general environmental interests, including an ethical perspective.