纳米线极化各向异性:太赫兹波段极化器件的基本概念和进展

IF 7.4 1区 物理与天体物理 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Progress in Quantum Electronics Pub Date : 2022-08-01 DOI:10.1016/j.pquantelec.2022.100417
Michael B. Johnston , Hannah J. Joyce
{"title":"纳米线极化各向异性:太赫兹波段极化器件的基本概念和进展","authors":"Michael B. Johnston ,&nbsp;Hannah J. Joyce","doi":"10.1016/j.pquantelec.2022.100417","DOIUrl":null,"url":null,"abstract":"<div><p>Pronounced polarization anisotropy in semiconductor nanowires has been exploited to achieve polarization-sensitive devices operating across the electromagnetic spectrum, from the ultraviolet to the terahertz band. This contribution describes the physical origins of optical and electrical anisotropy in nanowires. Polarization anisotropy arising from dielectric contrast, and the behaviour of (nano)wire grid polarizers, are derived from first principles. This review discusses experimental observations of polarization-sensitive light–matter interactions in nanowires. It then describes how these phenomena are employed in devices that detect or modulate polarized terahertz radiation on ultrafast timescales. Such novel terahertz device concepts are expected to find use in a wide variety of applications including high-speed terahertz-band communications and molecular fingerprinting.</p></div>","PeriodicalId":414,"journal":{"name":"Progress in Quantum Electronics","volume":"85 ","pages":"Article 100417"},"PeriodicalIF":7.4000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0079672722000428/pdfft?md5=b61f0d4b776cbd988fc12f062945b8a0&pid=1-s2.0-S0079672722000428-main.pdf","citationCount":"4","resultStr":"{\"title\":\"Polarization anisotropy in nanowires: Fundamental concepts and progress towards terahertz-band polarization devices\",\"authors\":\"Michael B. Johnston ,&nbsp;Hannah J. Joyce\",\"doi\":\"10.1016/j.pquantelec.2022.100417\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Pronounced polarization anisotropy in semiconductor nanowires has been exploited to achieve polarization-sensitive devices operating across the electromagnetic spectrum, from the ultraviolet to the terahertz band. This contribution describes the physical origins of optical and electrical anisotropy in nanowires. Polarization anisotropy arising from dielectric contrast, and the behaviour of (nano)wire grid polarizers, are derived from first principles. This review discusses experimental observations of polarization-sensitive light–matter interactions in nanowires. It then describes how these phenomena are employed in devices that detect or modulate polarized terahertz radiation on ultrafast timescales. Such novel terahertz device concepts are expected to find use in a wide variety of applications including high-speed terahertz-band communications and molecular fingerprinting.</p></div>\",\"PeriodicalId\":414,\"journal\":{\"name\":\"Progress in Quantum Electronics\",\"volume\":\"85 \",\"pages\":\"Article 100417\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0079672722000428/pdfft?md5=b61f0d4b776cbd988fc12f062945b8a0&pid=1-s2.0-S0079672722000428-main.pdf\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Quantum Electronics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0079672722000428\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Quantum Electronics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079672722000428","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 4

摘要

半导体纳米线中明显的极化各向异性已被利用来实现在电磁波谱上工作的极化敏感器件,从紫外线到太赫兹波段。这篇文章描述了纳米线中光学和电学各向异性的物理起源。极化各向异性引起的电介质对比,以及(纳米)线栅偏振器的行为,是从第一性原理推导出来的。本文综述了纳米线中偏振敏感光-物质相互作用的实验观察。然后描述了如何在超快时间尺度上检测或调制偏振太赫兹辐射的设备中使用这些现象。这种新颖的太赫兹器件概念有望在各种各样的应用中找到用途,包括高速太赫兹波段通信和分子指纹识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Polarization anisotropy in nanowires: Fundamental concepts and progress towards terahertz-band polarization devices

Pronounced polarization anisotropy in semiconductor nanowires has been exploited to achieve polarization-sensitive devices operating across the electromagnetic spectrum, from the ultraviolet to the terahertz band. This contribution describes the physical origins of optical and electrical anisotropy in nanowires. Polarization anisotropy arising from dielectric contrast, and the behaviour of (nano)wire grid polarizers, are derived from first principles. This review discusses experimental observations of polarization-sensitive light–matter interactions in nanowires. It then describes how these phenomena are employed in devices that detect or modulate polarized terahertz radiation on ultrafast timescales. Such novel terahertz device concepts are expected to find use in a wide variety of applications including high-speed terahertz-band communications and molecular fingerprinting.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Progress in Quantum Electronics
Progress in Quantum Electronics 工程技术-工程:电子与电气
CiteScore
18.50
自引率
0.00%
发文量
23
审稿时长
150 days
期刊介绍: Progress in Quantum Electronics, established in 1969, is an esteemed international review journal dedicated to sharing cutting-edge topics in quantum electronics and its applications. The journal disseminates papers covering theoretical and experimental aspects of contemporary research, including advances in physics, technology, and engineering relevant to quantum electronics. It also encourages interdisciplinary research, welcoming papers that contribute new knowledge in areas such as bio and nano-related work.
期刊最新文献
Elemental segregation and dimensional separation in halide perovskite light-emitting diodes III-nitride semiconductor membrane electronics and optoelectronics for heterogeneous integration Editorial Board Nonlinear photocurrent in quantum materials for broadband photodetection Technologies for modulation of visible light and their applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1