{"title":"基于网格的双目标欧氏旅行商问题的两阶段并行匹配框架","authors":"Fandel Lin, Hsun-Ping Hsieh","doi":"10.1145/3526025","DOIUrl":null,"url":null,"abstract":"Traveling salesman problem (TSP) is one of the most studied combinatorial optimization problems; several exact, heuristic or even learning-based strategies have been proposed to solve this challenging issue. Targeting on the research problem of bi-objective non-monotonic Euclidean TSP and based on the concept of the multi-agent-based approach, we propose a two-stage parallel matching approaching for solving TSP. Acting as a divide-and-conquer strategy, the merit lies in the simultaneously clustering and routing in the dividing process. Precisely, we first propose the Two-Stage Parallel Matching algorithm (TSPM) to deal with the bi-objective TSP. We then formulate the Grid-Based Two-Stage Parallel Matching (GRAPE) framework, which can synergize with TSPM, exact method, or other state-of-the-art TSP solvers, for solving large-scale Euclidean TSP. According to this framework, the original problem space is divided into smaller regions and then computed in parallel, which helps to tackle and derive solutions for larger-scale Euclidean TSP within reasonable computational resources. Preliminary evaluation based on TSPLIB testbed shows that our proposed GRAPE framework holds a decent quality of solutions in especially runtime for large-scale Euclidean TSP. Meanwhile, experiments conducted on two real-world datasets demonstrate the efficacy and adaptability of our proposed TSPM in solving the bi-objective non-monotonic TSP.","PeriodicalId":43641,"journal":{"name":"ACM Transactions on Spatial Algorithms and Systems","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2022-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Grid-Based Two-Stage Parallel Matching Framework for Bi-Objective Euclidean Traveling Salesman Problem\",\"authors\":\"Fandel Lin, Hsun-Ping Hsieh\",\"doi\":\"10.1145/3526025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traveling salesman problem (TSP) is one of the most studied combinatorial optimization problems; several exact, heuristic or even learning-based strategies have been proposed to solve this challenging issue. Targeting on the research problem of bi-objective non-monotonic Euclidean TSP and based on the concept of the multi-agent-based approach, we propose a two-stage parallel matching approaching for solving TSP. Acting as a divide-and-conquer strategy, the merit lies in the simultaneously clustering and routing in the dividing process. Precisely, we first propose the Two-Stage Parallel Matching algorithm (TSPM) to deal with the bi-objective TSP. We then formulate the Grid-Based Two-Stage Parallel Matching (GRAPE) framework, which can synergize with TSPM, exact method, or other state-of-the-art TSP solvers, for solving large-scale Euclidean TSP. According to this framework, the original problem space is divided into smaller regions and then computed in parallel, which helps to tackle and derive solutions for larger-scale Euclidean TSP within reasonable computational resources. Preliminary evaluation based on TSPLIB testbed shows that our proposed GRAPE framework holds a decent quality of solutions in especially runtime for large-scale Euclidean TSP. Meanwhile, experiments conducted on two real-world datasets demonstrate the efficacy and adaptability of our proposed TSPM in solving the bi-objective non-monotonic TSP.\",\"PeriodicalId\":43641,\"journal\":{\"name\":\"ACM Transactions on Spatial Algorithms and Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Spatial Algorithms and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3526025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Spatial Algorithms and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3526025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"REMOTE SENSING","Score":null,"Total":0}
A Grid-Based Two-Stage Parallel Matching Framework for Bi-Objective Euclidean Traveling Salesman Problem
Traveling salesman problem (TSP) is one of the most studied combinatorial optimization problems; several exact, heuristic or even learning-based strategies have been proposed to solve this challenging issue. Targeting on the research problem of bi-objective non-monotonic Euclidean TSP and based on the concept of the multi-agent-based approach, we propose a two-stage parallel matching approaching for solving TSP. Acting as a divide-and-conquer strategy, the merit lies in the simultaneously clustering and routing in the dividing process. Precisely, we first propose the Two-Stage Parallel Matching algorithm (TSPM) to deal with the bi-objective TSP. We then formulate the Grid-Based Two-Stage Parallel Matching (GRAPE) framework, which can synergize with TSPM, exact method, or other state-of-the-art TSP solvers, for solving large-scale Euclidean TSP. According to this framework, the original problem space is divided into smaller regions and then computed in parallel, which helps to tackle and derive solutions for larger-scale Euclidean TSP within reasonable computational resources. Preliminary evaluation based on TSPLIB testbed shows that our proposed GRAPE framework holds a decent quality of solutions in especially runtime for large-scale Euclidean TSP. Meanwhile, experiments conducted on two real-world datasets demonstrate the efficacy and adaptability of our proposed TSPM in solving the bi-objective non-monotonic TSP.
期刊介绍:
ACM Transactions on Spatial Algorithms and Systems (TSAS) is a scholarly journal that publishes the highest quality papers on all aspects of spatial algorithms and systems and closely related disciplines. It has a multi-disciplinary perspective in that it spans a large number of areas where spatial data is manipulated or visualized (regardless of how it is specified - i.e., geometrically or textually) such as geography, geographic information systems (GIS), geospatial and spatiotemporal databases, spatial and metric indexing, location-based services, web-based spatial applications, geographic information retrieval (GIR), spatial reasoning and mining, security and privacy, as well as the related visual computing areas of computer graphics, computer vision, geometric modeling, and visualization where the spatial, geospatial, and spatiotemporal data is central.