{"title":"具有交互固定效应的核范数正则分位数回归","authors":"Junlong Feng","doi":"10.1017/s0266466623000129","DOIUrl":null,"url":null,"abstract":"This paper studies large N and large T conditional quantile panel data models with interactive fixed effects. We propose a nuclear norm penalized estimator of the coefficients on the covariates and the low-rank matrix formed by the interactive fixed effects. The estimator solves a convex minimization problem, not requiring pre-estimation of the (number of) interactive fixed effects. It also allows the number of covariates to grow slowly with N and T. We derive an error bound on the estimator that holds uniformly in the quantile level. The order of the bound implies uniform consistency of the estimator and is nearly optimal for the low-rank component. Given the error bound, we also propose a consistent estimator of the number of interactive fixed effects at any quantile level. We demonstrate the performance of the estimator via Monte Carlo simulations.","PeriodicalId":49275,"journal":{"name":"Econometric Theory","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"NUCLEAR NORM REGULARIZED QUANTILE REGRESSION WITH INTERACTIVE FIXED EFFECTS\",\"authors\":\"Junlong Feng\",\"doi\":\"10.1017/s0266466623000129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies large N and large T conditional quantile panel data models with interactive fixed effects. We propose a nuclear norm penalized estimator of the coefficients on the covariates and the low-rank matrix formed by the interactive fixed effects. The estimator solves a convex minimization problem, not requiring pre-estimation of the (number of) interactive fixed effects. It also allows the number of covariates to grow slowly with N and T. We derive an error bound on the estimator that holds uniformly in the quantile level. The order of the bound implies uniform consistency of the estimator and is nearly optimal for the low-rank component. Given the error bound, we also propose a consistent estimator of the number of interactive fixed effects at any quantile level. We demonstrate the performance of the estimator via Monte Carlo simulations.\",\"PeriodicalId\":49275,\"journal\":{\"name\":\"Econometric Theory\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometric Theory\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1017/s0266466623000129\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometric Theory","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1017/s0266466623000129","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
NUCLEAR NORM REGULARIZED QUANTILE REGRESSION WITH INTERACTIVE FIXED EFFECTS
This paper studies large N and large T conditional quantile panel data models with interactive fixed effects. We propose a nuclear norm penalized estimator of the coefficients on the covariates and the low-rank matrix formed by the interactive fixed effects. The estimator solves a convex minimization problem, not requiring pre-estimation of the (number of) interactive fixed effects. It also allows the number of covariates to grow slowly with N and T. We derive an error bound on the estimator that holds uniformly in the quantile level. The order of the bound implies uniform consistency of the estimator and is nearly optimal for the low-rank component. Given the error bound, we also propose a consistent estimator of the number of interactive fixed effects at any quantile level. We demonstrate the performance of the estimator via Monte Carlo simulations.
Econometric TheoryMATHEMATICS, INTERDISCIPLINARY APPLICATIONS-STATISTICS & PROBABILITY
CiteScore
1.90
自引率
0.00%
发文量
52
审稿时长
>12 weeks
期刊介绍:
Since its inception, Econometric Theory has aimed to endow econometrics with an innovative journal dedicated to advance theoretical research in econometrics. It provides a centralized professional outlet for original theoretical contributions in all of the major areas of econometrics, and all fields of research in econometric theory fall within the scope of ET. In addition, ET fosters the multidisciplinary features of econometrics that extend beyond economics. Particularly welcome are articles that promote original econometric research in relation to mathematical finance, stochastic processes, statistics, and probability theory, as well as computationally intensive areas of economics such as modern industrial organization and dynamic macroeconomics.