Rafid Mostafiz, Mohammad Shorif Uddin, K. M. Uddin, Mohammad Motiur Rahman
{"title":"使用更快的R-CNN和世代对抗性网络诊断新冠肺炎和其他胸部感染","authors":"Rafid Mostafiz, Mohammad Shorif Uddin, K. M. Uddin, Mohammad Motiur Rahman","doi":"10.1145/3520125","DOIUrl":null,"url":null,"abstract":"The rapid spreading of coronavirus (COVID-19) caused severe respiratory infections affecting the lungs. Automatic diagnosis helps to fight against COVID-19 in community outbreaks. Medical imaging technology can reinforce disease monitoring and detection facilities with the advancement of computer vision. Unfortunately, deep learning models are facing starvation of more generalized datasets as the data repositories of COVID-19 are not rich enough to provide significant distinct features. To address the limitation, this article describes the generation of synthetic images of COVID-19 along with other chest infections with distinct features by empirical top entropy-based patch selection approach using the generative adversarial network. After that, a diagnosis is performed through a faster region-based convolutional neural network using 6,406 synthetic as well as 3,933 original chest X-ray images of different chest infections, which also addressed the data imbalance problems and not recumbent to a particular class. The experiment confirms a satisfactory COVID-19 diagnosis accuracy of 99.16% in a multi-class scenario.","PeriodicalId":43641,"journal":{"name":"ACM Transactions on Spatial Algorithms and Systems","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2022-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"COVID-19 Along with Other Chest Infection Diagnoses Using Faster R-CNN and Generative Adversarial Network\",\"authors\":\"Rafid Mostafiz, Mohammad Shorif Uddin, K. M. Uddin, Mohammad Motiur Rahman\",\"doi\":\"10.1145/3520125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rapid spreading of coronavirus (COVID-19) caused severe respiratory infections affecting the lungs. Automatic diagnosis helps to fight against COVID-19 in community outbreaks. Medical imaging technology can reinforce disease monitoring and detection facilities with the advancement of computer vision. Unfortunately, deep learning models are facing starvation of more generalized datasets as the data repositories of COVID-19 are not rich enough to provide significant distinct features. To address the limitation, this article describes the generation of synthetic images of COVID-19 along with other chest infections with distinct features by empirical top entropy-based patch selection approach using the generative adversarial network. After that, a diagnosis is performed through a faster region-based convolutional neural network using 6,406 synthetic as well as 3,933 original chest X-ray images of different chest infections, which also addressed the data imbalance problems and not recumbent to a particular class. The experiment confirms a satisfactory COVID-19 diagnosis accuracy of 99.16% in a multi-class scenario.\",\"PeriodicalId\":43641,\"journal\":{\"name\":\"ACM Transactions on Spatial Algorithms and Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Spatial Algorithms and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3520125\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Spatial Algorithms and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3520125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"REMOTE SENSING","Score":null,"Total":0}
COVID-19 Along with Other Chest Infection Diagnoses Using Faster R-CNN and Generative Adversarial Network
The rapid spreading of coronavirus (COVID-19) caused severe respiratory infections affecting the lungs. Automatic diagnosis helps to fight against COVID-19 in community outbreaks. Medical imaging technology can reinforce disease monitoring and detection facilities with the advancement of computer vision. Unfortunately, deep learning models are facing starvation of more generalized datasets as the data repositories of COVID-19 are not rich enough to provide significant distinct features. To address the limitation, this article describes the generation of synthetic images of COVID-19 along with other chest infections with distinct features by empirical top entropy-based patch selection approach using the generative adversarial network. After that, a diagnosis is performed through a faster region-based convolutional neural network using 6,406 synthetic as well as 3,933 original chest X-ray images of different chest infections, which also addressed the data imbalance problems and not recumbent to a particular class. The experiment confirms a satisfactory COVID-19 diagnosis accuracy of 99.16% in a multi-class scenario.
期刊介绍:
ACM Transactions on Spatial Algorithms and Systems (TSAS) is a scholarly journal that publishes the highest quality papers on all aspects of spatial algorithms and systems and closely related disciplines. It has a multi-disciplinary perspective in that it spans a large number of areas where spatial data is manipulated or visualized (regardless of how it is specified - i.e., geometrically or textually) such as geography, geographic information systems (GIS), geospatial and spatiotemporal databases, spatial and metric indexing, location-based services, web-based spatial applications, geographic information retrieval (GIR), spatial reasoning and mining, security and privacy, as well as the related visual computing areas of computer graphics, computer vision, geometric modeling, and visualization where the spatial, geospatial, and spatiotemporal data is central.