Johanna Baales, Viktoria V. Zeisler-Diehl, Suraya Narine, Lukas Schreiber
{"title":"表面活性剂与月桂树叶片表面的相互作用:润湿接触角的时间依赖性恢复取决于表面活性剂的理化性质","authors":"Johanna Baales, Viktoria V. Zeisler-Diehl, Suraya Narine, Lukas Schreiber","doi":"10.1186/s40538-023-00455-y","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Surfactants are added to spray solutions because they significantly improve foliar uptake of active ingredients (AIs) into the leaves. It was intended to investigate whether surfactant solutions forming a dried deposit on Prunus leaf surfaces after they were sprayed, lead to structural and functional changes of the cuticle/atmosphere interface. This could potentially result in irreversibly enhanced leaf surface wetting, which should be of major disadvantage. Enhanced wetting could promote leaching of ions and promote leaf surface colonization with microorganisms.</p><h3>Results</h3><p><i>Prunus laurocerasus</i> leaf surfaces were sprayed with aqueous solutions of non-ionic alcohol ethoxylates, a cationic, an anionic and one large polar surfactant. Directly after spraying and drying of the different surfactant solutions, wetting contact angles of deionized water (without surfactant) were significantly lower (between 6 and 54°) compared to wetting contact angles on untreated leaves (77°). Leaf surface wettability with deionized water was more pronounced with non-ionic alcohol ethoxylates (wetting contact angles ranging between 6 and 22°) compared to the other 3 surfactants (wetting contact angles ranging between 42 and 54°). Wetting contact angles of deionized water on leaf surfaces treated with non-ionic alcohol ethoxylates continuously increased again over time resulting in final wetting contact angles not different from untreated leaf surfaces. The time-dependent recovery of wetting contact angles was dependent on the degree of ethoxylation of the non-ionic alcohol ethoxylates. The wetting contact angle recovery rate was lower the higher the degree of ethoxylation of the alcohol ethoxylates was. With the cationic, anionic and large polar surfactant a recovery of wetting contact angles was not observed. In addition, on fully dehydrated and dead leaves wetting contact angle recovery was not observed for any of the tested surfactants after spraying and drying. Analytical determinations of the amounts of alcohol ethoxylates on the leaf surfaces after spraying and drying showed that amounts of alcohol ethoxylates decreased over time on the surface (24–72 h).</p><h3>Conclusion</h3><p>Our results indicate that non-ionic alcohol ethoxylates diffused within hours from the leaf surface into the leaf over time and thus fully disappeared from the leaf surface. This was not the case with the cationic, anionic and the large polar surfactants remaining on the leaf surface.</p><h3>Graphical Abstract</h3>\n <div><figure><div><div><picture><source><img></source></picture></div></div></figure></div>\n </div>","PeriodicalId":512,"journal":{"name":"Chemical and Biological Technologies in Agriculture","volume":"10 1","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chembioagro.springeropen.com/counter/pdf/10.1186/s40538-023-00455-y","citationCount":"1","resultStr":"{\"title\":\"Interaction of surfactants with Prunus laurocerasus leaf surfaces: time-dependent recovery of wetting contact angles depends on physico-chemical properties of surfactants\",\"authors\":\"Johanna Baales, Viktoria V. Zeisler-Diehl, Suraya Narine, Lukas Schreiber\",\"doi\":\"10.1186/s40538-023-00455-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Surfactants are added to spray solutions because they significantly improve foliar uptake of active ingredients (AIs) into the leaves. It was intended to investigate whether surfactant solutions forming a dried deposit on Prunus leaf surfaces after they were sprayed, lead to structural and functional changes of the cuticle/atmosphere interface. This could potentially result in irreversibly enhanced leaf surface wetting, which should be of major disadvantage. Enhanced wetting could promote leaching of ions and promote leaf surface colonization with microorganisms.</p><h3>Results</h3><p><i>Prunus laurocerasus</i> leaf surfaces were sprayed with aqueous solutions of non-ionic alcohol ethoxylates, a cationic, an anionic and one large polar surfactant. Directly after spraying and drying of the different surfactant solutions, wetting contact angles of deionized water (without surfactant) were significantly lower (between 6 and 54°) compared to wetting contact angles on untreated leaves (77°). Leaf surface wettability with deionized water was more pronounced with non-ionic alcohol ethoxylates (wetting contact angles ranging between 6 and 22°) compared to the other 3 surfactants (wetting contact angles ranging between 42 and 54°). Wetting contact angles of deionized water on leaf surfaces treated with non-ionic alcohol ethoxylates continuously increased again over time resulting in final wetting contact angles not different from untreated leaf surfaces. The time-dependent recovery of wetting contact angles was dependent on the degree of ethoxylation of the non-ionic alcohol ethoxylates. The wetting contact angle recovery rate was lower the higher the degree of ethoxylation of the alcohol ethoxylates was. With the cationic, anionic and large polar surfactant a recovery of wetting contact angles was not observed. In addition, on fully dehydrated and dead leaves wetting contact angle recovery was not observed for any of the tested surfactants after spraying and drying. Analytical determinations of the amounts of alcohol ethoxylates on the leaf surfaces after spraying and drying showed that amounts of alcohol ethoxylates decreased over time on the surface (24–72 h).</p><h3>Conclusion</h3><p>Our results indicate that non-ionic alcohol ethoxylates diffused within hours from the leaf surface into the leaf over time and thus fully disappeared from the leaf surface. This was not the case with the cationic, anionic and the large polar surfactants remaining on the leaf surface.</p><h3>Graphical Abstract</h3>\\n <div><figure><div><div><picture><source><img></source></picture></div></div></figure></div>\\n </div>\",\"PeriodicalId\":512,\"journal\":{\"name\":\"Chemical and Biological Technologies in Agriculture\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2023-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://chembioagro.springeropen.com/counter/pdf/10.1186/s40538-023-00455-y\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical and Biological Technologies in Agriculture\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s40538-023-00455-y\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical and Biological Technologies in Agriculture","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1186/s40538-023-00455-y","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
Interaction of surfactants with Prunus laurocerasus leaf surfaces: time-dependent recovery of wetting contact angles depends on physico-chemical properties of surfactants
Background
Surfactants are added to spray solutions because they significantly improve foliar uptake of active ingredients (AIs) into the leaves. It was intended to investigate whether surfactant solutions forming a dried deposit on Prunus leaf surfaces after they were sprayed, lead to structural and functional changes of the cuticle/atmosphere interface. This could potentially result in irreversibly enhanced leaf surface wetting, which should be of major disadvantage. Enhanced wetting could promote leaching of ions and promote leaf surface colonization with microorganisms.
Results
Prunus laurocerasus leaf surfaces were sprayed with aqueous solutions of non-ionic alcohol ethoxylates, a cationic, an anionic and one large polar surfactant. Directly after spraying and drying of the different surfactant solutions, wetting contact angles of deionized water (without surfactant) were significantly lower (between 6 and 54°) compared to wetting contact angles on untreated leaves (77°). Leaf surface wettability with deionized water was more pronounced with non-ionic alcohol ethoxylates (wetting contact angles ranging between 6 and 22°) compared to the other 3 surfactants (wetting contact angles ranging between 42 and 54°). Wetting contact angles of deionized water on leaf surfaces treated with non-ionic alcohol ethoxylates continuously increased again over time resulting in final wetting contact angles not different from untreated leaf surfaces. The time-dependent recovery of wetting contact angles was dependent on the degree of ethoxylation of the non-ionic alcohol ethoxylates. The wetting contact angle recovery rate was lower the higher the degree of ethoxylation of the alcohol ethoxylates was. With the cationic, anionic and large polar surfactant a recovery of wetting contact angles was not observed. In addition, on fully dehydrated and dead leaves wetting contact angle recovery was not observed for any of the tested surfactants after spraying and drying. Analytical determinations of the amounts of alcohol ethoxylates on the leaf surfaces after spraying and drying showed that amounts of alcohol ethoxylates decreased over time on the surface (24–72 h).
Conclusion
Our results indicate that non-ionic alcohol ethoxylates diffused within hours from the leaf surface into the leaf over time and thus fully disappeared from the leaf surface. This was not the case with the cationic, anionic and the large polar surfactants remaining on the leaf surface.
期刊介绍:
Chemical and Biological Technologies in Agriculture is an international, interdisciplinary, peer-reviewed forum for the advancement and application to all fields of agriculture of modern chemical, biochemical and molecular technologies. The scope of this journal includes chemical and biochemical processes aimed to increase sustainable agricultural and food production, the evaluation of quality and origin of raw primary products and their transformation into foods and chemicals, as well as environmental monitoring and remediation. Of special interest are the effects of chemical and biochemical technologies, also at the nano and supramolecular scale, on the relationships between soil, plants, microorganisms and their environment, with the help of modern bioinformatics. Another special focus is the use of modern bioorganic and biological chemistry to develop new technologies for plant nutrition and bio-stimulation, advancement of biorefineries from biomasses, safe and traceable food products, carbon storage in soil and plants and restoration of contaminated soils to agriculture.
This journal presents the first opportunity to bring together researchers from a wide number of disciplines within the agricultural chemical and biological sciences, from both industry and academia. The principle aim of Chemical and Biological Technologies in Agriculture is to allow the exchange of the most advanced chemical and biochemical knowledge to develop technologies which address one of the most pressing challenges of our times - sustaining a growing world population.
Chemical and Biological Technologies in Agriculture publishes original research articles, short letters and invited reviews. Articles from scientists in industry, academia as well as private research institutes, non-governmental and environmental organizations are encouraged.